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1 Introduction

Public good experiments typically display more cooperation than predicted by rational and

selfish preferences. The cooperation levels, though, vary depending on the exact design, per

individual, and are often diminishing over time.1 Various explanations have been offered,

among which: altruism (Andreoni and Miller, 2002), reciprocity (Falk and Fischbacher,

2006), learning (Roth and Erev, 1995), and conditional cooperation (Fischbacher et al.,

2001). Recently, both direct behavioral (van Dijk et al., 2002; Bault et al., 2016) as well as

neurobiological (Bault et al., 2015) evidence has been provided for an alternative explana-

tion involving the affective tie-mechanism introduced by van Dijk and van Winden (1997).

Their model is characterized by affective interpersonal ties. Simply put, a person (i) takes

the welfare of another person (j) into account according to the behavior of this other per-

son. This is a dynamic proces whereby every action of j is compared to a reference action,

if this action is more beneficial to i than the reference action a positve affective impuls is

generated that could change the importance i attaches to the welfare of j. This means that

this process is not only dynamic but also allows for an asymmetry between the development

of the weight i attaches to the welfare of j and the weight j attaches to the welfare of i.

Although this model seems rather succesful in tracking behavior in the public good

games examined, there are several issues that need to be addressed. First, work on the tie

mechanism so far has focused on cooperative interpersonal relationships, leaving negative

(hate) relationships underexplored. This is important because there exists a lot of eveidence

that negative behaviors and (hate) relationships exist.2 . Second, it is not examined whether

people react differently to positive versus negative behavior of others. The difference in

direction is obvious, but how about the size of the action? Third, the tie model has

not been investigated in a horse race with other models using out-of-sample predictions

regarding the same game3. Fourth, it is not clear whether the tie model would be helpful

in explaining behavior across different contexts. For example could it integrate behavior

1See Chaudhuri (2011) and Plott and Smith (2008) for an overview
2Abbink and Sadrieh (2009) and Bosman and van Winden (2002) show that people are willing to destroy

other people’s earnings even if it does not lead to higher earnings for themselves. In the same experiment
Bosman and Van Winden also show that negative emotions are involved if money is taken away from
participants and when players engage in the destruction of the others’ earnings by destructing their own
earnings. More recently Bolle et al. (2013) show that participants are willing to decrease the chances of
others to win a prize. Furthermore they find that in a repeated game setting players retaliate harmful
actions and that this retaliation is driven by negative emotions caused by these harmful actions.

3See Bault et al. (2016)
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observed in puclic good games with behavior in repeated prisoner’s dilemma games?4

In this paper we will address each of these four issues. To adress the first two, a novel

game design is used: the fragile public good game (FPG) game. In this game there is

as much room for antagonistic behavior as there is for cooperative behavior. The third

issue is addressed by designing an experiment with two independent parts, which allows

us to predict behavior in the second part using parameter estimates from the first part.

This creates proper out-of-sample predictions for the different social preferences as well

as learning models that will be explored. Finally, we show that a simple two parameter

tie model can mimic observed behavioral rules like tit-for-tat and is able to explain why

and how players switch rules as the parameters of a prisoner’s dilemma (PD) game change.

Next, the parameters estimated on the behavioral data from the FPG game are investigated

to see what kind of behavior they would predict in different repeated PD settings.

Furthermore, earlier findings in terms of the relative importance of the different tie

parameters are confirmed. We find evidence that people react stronger to positive behavior

of others than to negative behavior. This might be one of the driving factors of repeated

cooperation. Another important finding is, that the tie model predicts significantly better

than other models, including of social preferences and the reinforcement learning model of

Roth and Erev (1995). Finally, a tie model with just two parameters seems well able to

explain results found in different repeated PD environments.

Section 2 introduces the FPG game, provides a theoretical analysis using the tie model

and presents our hypothesis. Section 3 describes the experimental and estimation methods

used, while section 4 presents our results. Section 5 applies the tie model to the repeated

prisoner’s dilemma game, and section 6 concludes.

2 Theory

2.1 Fragile Public Good Game

In order to experimentally address the questions raised regarding negative ties we designed

the Fragile Public Good (FPG) game, a two-player game that allows players to financially

hurt as well as help the other player. A key feature of the FPG game is that it gives as much

room for destructive behavior (taking) as for constructive behavior (contributing) ragarding

4See for instance Dal Bó and Fréchette (2011) and Fudenberg et al. (2012)
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a public good. This is achieved by having both the (standard) Nash equilibrium and the

status quo i.e., the initial allocation of tokens to the common account in the middle of the

action space. With, in addition, full symmetry in the marginal cost of taking and contribut-

ing, this leaves substantial leeway for the development of negative as well as positive ties.

There are relatively few public good experiments with an interior Nash equilibrium (Laury

and Holt, 2008), and, to the best of our knowledge, no such experiments that allow for as

much destructive as cooperative behavior. This game enables us to estimate the parameter

values of our model. Furthermore, by maintaining comparability with ordinary (non-linear)

public goods games, we can compare our results with existing studies of such games. By

using a repeated game where in the first part players interact with a fixed partner, but

are then rematched randomly with a new partner for playing in the second part, we can

investigate the out-of-sample predictive performance of our estimated model.

More specifically, both players in our FPG game are endowed with 7 tokens in their

private account, while sharing a common account containing 14 tokens at the beginning

of every round. Each token stored in the private account generates 10 MU for the player

concerned, whereas a token in the common account generates 10 MU for both players. Each

round, both players simultaneously decide whether to contribute tokens to the common

account or to take tokens from the common account. They can transfer up to 7 tokens per

round from the common account to their private account, or the other way around.

Transferring tokens in either direction comes at a marginal cost, that increases with 2

MU per token. The transfer of the first token thus costs 2 MU, transferring a second one

costs an additional 4 MU (for a total of 2+4= 6 MU), transferring a third token leads to

a total cost of 12 MU (2+4+6), and so forth. The effect of contributing the first token is,

thus, that the other player receives 10 MU while the contributing player gets 2 MU less. By

contributing a second token a player generates another 10 MU for the other player at a cost

of 4 MU, etcetera, until the seventh token which earns the other player still 10 MU while it

costs the contributing player 14 MU to transfer. Taking tokens has the exact same effect on

the transferring player as contributing the same amount of tokens would have. For the other

player, however, the effect is the exact opposite: He or she will now lose 10 MU per token

instead of gaining 10 MU. Because the only difference between taking and contributing

concerns the development of, respectively, a negative and a positive externality, this game
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allows us to study, in a clean way, whether an asymmetry exists in the impact of hurting

behavior (taking) and helping behavior (contributing).

Making no transfer may be seen as a reference point as it accords with the status quo

as well as the standard Nash best response. Moreover, it may easily attract a player’s

attention in the payoff matrix of the game (see appendix D). We will return to this below.

The game is a non-linear public good game with an internal social optimum, where both

players contribute either 4 or 5 tokens. The similarities with a more conventional public

good game become even clearer when one sees taking seven tokens as the starting point, so

one can only contribute. In that case the stage game becomes similar to a public good game

with diminishing returns to contributing, albeit with an internal standard Nash equilibrium

and an internal social optimum.

2.2 Model

We use an adapted version of the tie model of Bault et al. (2016). In this model αijt captures

the tie that i has with j at time t, and formally expresses the weight that i attaches to the

utility (payoff) of j. These ties are personal, dynamic and do not necessarily have to be

symmetric.

We start from the basic model in which players have the following interdependent utility

function:

Vit = Uit + αijtUjt (1)

Here Vit denotes the (extended) utility function of player i at time t, while Uit and Ujt

indicate the payoffs of i and j, respectively, at time t.

Players do not only take the current period into account, but also the subsequent one

(one-period forward looking behavior). Empirical evidence suggests that players are rather

myopic (see e.g.Bone et al. (2003) and Bone et al. (2004)). This leads us to the following

simple extension of eq. (1):

Vit = Uit + αijtUjt + (Uit+1 + αijtUjt+1) (2)

For the FPG game, letting Cit stand for i’s contribution to the common account, i’s expected
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payoff (U eit) can be written as :

U eit = 210− C2
it − |Cit|+ 10Cejt

With

−7 ≤ Cit ≤ 7

(3)

Including future periods in the player’s utility function does not affect Cit if i does not

expect to be able to influence j’s next period contribution. Players may believe, however,

that (some) other players are imitators or conditional cooperators (Fehr and Fischbacher,

2003). Therefore, we assume the following relationship until the last round (as there is no

future left in the final round):

Cejt+1 = γiCit + (1− γi)Cejt

With 0 ≤ γ ≤ 1

(4)

From these equations it follows that the optimal contribution for player i depends on

both the parameter γi, indicating how strong agent i believes he can influence agent j, and

αijt, which expresses the weight i assigns to the payoff for j. We specify the latter as:

αijt = δ1iαijt−1 + δ2iIijt−1 (5)

With Iijt−1 standing for an impulse determined by the difference between j’s last round

contribution and a reference contribution. In this paper, though, we will use the next, more

general specification, which differentiates between positive and negative impulses:

αijt =

{
δ1iαijt−1 + δ2NiIijt−1 Iijt−1 ≤ 0 (6a)

δ1iαijt−1 + δ2PiIijt−1 Iijt−1 > 0 (6b)

Here, we assume that Iijt−1 equals the difference between the other player’s contribution

and the one-shot Nash equilibrium choice (0), based on the discussion above regarding

the reference point (see also the estimation results in Appendix B). The tie meachanism

described above can also be interpreted as a information extraction mechanism, used to

determine if the other player is a friend or a foe (Bault et al., 2015). A higher positive and
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negative impulse parameters can then be seen as s preference for respectively cooperative

or destructive behavior.

2.3 Model analysis and hypotheses

An equilibrium is defined by a situation where both players have no incentive to change

their contribution. We will now discuss the conditions and nature of potential equilibria.

To that purpose, we start by comparing the (expected) utility of two adjacent choices. Due

to the fact that Vit( Cit) is concave, Cit is a best response if Vit(Cit)≥Vit(Cit + 1) and

Vit(Cit)≥Vit(Cit − 1). Assuming here, for convenience, that both Cit and Cejt are greater

than or equal to zero,5 and omitting the subscripts of α and γ, the difference in utility

equals:

Vit(Cit + 1)− Vit(Cit) = 10α+ 10γ − (2Cit + 2)− γα(2γCit + 2(1− γ)Cejt + γ + 1) (7)

Eq. (7) shows the costs and benefits of contributing an extra token (in the positive domain).

If players are not playing strategically the costs are simply 2Cit + 2, while the benefits are

10α. If players expect to be able to influence their counterpart the cost-benefit analysis

becomes more complicated. There are benefits of 10γ, from the expected imitation or

positive reciprocity by the other, as well as new costs of γα(2γCit + 2(1 − γ)Cejt + γ + 1),

as players with α > 0 care about the fact that the other faces a cost of reciprocating or

imitating.

The following propositions can de proven: First of all, it turns out that contributions

outside of the interval [−5, 5] can never be part of any equilibrium for conventional values

of α between 1 and -1. This result is important as it shows that the bounds of the decision

space are not part of any equilibrium in that case, which is helpful for estimating the model.

For instance, suppose we would like to estimate α in the myopic model, then, if a player

repeatedly made boundary decisions (C = 7 or C = −7) we would only have information

about respectively, the lower bound and the upper bound of the α parameter.

Proposition 1. Contributions outside of the interval [−5, 5] can never be part of any

equilibrium if −1≤α≤1.

5In Appendix A also addresses the case where Cit is smaller than zero
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Proof. See Appendix A.1.

Next, focusing first on symmetric equilibria (Cit = Cjt), we arrive at the following

proposition:

Proposition 2. Any contribution level where Cit = Cjt ∈ [−5, 5] can be part of an equilib-

rium.

Proof. See Appendix A.2.

An asymmetric equilibrium is less likely as one player is then always worse of than the

other player. Theoretically, asymmetric equilibria are not impossible, though, but the pa-

rameter constraints are more restrictive than for symmetric ones. The farther the different

contributions are apart the more extreme the conditions for these equilibria become. The

following proposition refers to their existence:

Proposition 3. Asymmetric equilibria exist if either −5 ≤ Cit, Cjt < 0 or 0 ≤ Cit, Cjt ≤ 5.

Proof. See Appendix A.3.

Our last proposition establishes a parameter restriction for efficient cooperation. For

convenience, we restrict ourselves here to the myopic model as this will turn out to be the

most relevant model in our study. Similar restrictions including γ could be derived for the

model that allows for forward looking behavior (see Appendix A.2).

Proposition 4. For the socially optimal choices to be part of an equilibrium under the

myopic model, the parameters of both players tie mechanism should satisfy the restriction:

0.2 ≤ δ2i
1−δ1i ≤ 0.25, which is a necessary but not a sufficient condition.

Proof. See Appendix A.4.

The intuition for this results is that if players have a δ2
1−δ1 ratio that is below 0.2 they

built insufficiently strong ties. If the ratio is larger than 0.25 the opposite happens: the

ties become so strong that α will grow larger than 1 implying that players will overinvest

in this relationship.

Based on the propositions 1,2, and 3 our first hypothesis is:

Hypothesis 1. If both players in a dyad do not change their contribution for multiple

consecutive rounds, both contribute an equal amount and this contribution lies between -5

and 5 (inclusive)
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Our second hypothesis is motivated by the earlier mentioned work of Baumeister et al.

(2001) and Baumeister and Leary (1995). They collect evidence that indicates that negative

experiences that coincide with negative emotions have a stronger and longer lasting impact

on someone’s wellbeing and behavior than positive experiences and emotions. Furthermore,

Kuhnen (2015) finds that investors weigh negative news more than positive news in an

experimental setting.

Hypothesis 2. Negative impulses have a bigger impact on the weight a player allocates

to the payoff of a counterpart (the social tie) than positive ones, or in the context of our

model: δ2N > δ2P .

The third hypothesis concerns the performance of the model, specifically its predictive

accuracy. Bault et al. (2016) already investigated the comparative performance of a ties

model with δ2N = δ2P within sample, where the number of parameters could be an issue.

Here we apply a true out-of-sample test and compare with alternative models, now including

a learning model. Therefore the final hypothesis reads:

Hypothesis 3. When calibrated on the first FPG game our ties model gives more precise

estimates of a subject’s behavior in the second FPG game, as compared to competing models

that are calibrated on the same data.

Our final hypothesis is based on survey papers by Chaudhuri (2011) and Kagel et al.

(1995). They find that in most public good games contribution levels are declining. If we

relate these results with proposition 4, we hypothesize that most subjects will not fullfill

the restrictions outlined in this proposition:

Hypothesis 4. For the majority of the subjects 0.2 ≤ δ2i
1−δ1i ≤ 0.25 will not hold.

3 Methods

3.1 Experiment

The experiment took place in November 2012 and April 2013. It consisted of 3 sessions

with 130 (65 female, 2 unreported) participants. All subjects were recruited through the

recruitment system of the CREED laboratoryof the university Amsterdam. Students who
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had participated in previous public good experiments or power-to-take experiments (as

recorded in the CREED recruitment system) were excluded.

The entire experiment was held in the CREED laboratory and completely computer-

ized. In the experiment we used Monetary Units (MUs) to express the earnings of the

participants, which were converted to euros by a rate of 700 MU to one euro. The average

earnings in the experiment were e 25.65 (there was no show-up fee as the theoretical min-

imum earnings exceded e 10, no participant earned less than e 15) and the sessions took

about two hours.

During the experiment the participants were first asked to perform a Social Value Ori-

entation (SVO) test (Liebrand and McClintock, 1988), where we use the version of van

Dijk et al. (2002). In this test participants decide on payoff allocations between Self and

an anonymous Other. MUs allocated to Other affected the earnings of a random other

participant in the experiment. Participants were informed that all their choices in the SVO

test remained confidential and only learned their earnings at the end of the experiment.

An example of the choices made in an SVO test can be found in Appendix D.

Every question of the SVO test concerns a choice between two payoff allocations. Each

allocation represents a point on a circle around the origin, where the payoff to self is on

the x-axes and the payoff to Other is on the y-axes. In total the participants had to make

32 of these choices in the SVO test. An angle is constructed by aggregating all the vectors

spanned up by the 32 chosen payoff allocations. An individual’s distributional preferences

can be expressed by this angle. For example, an angle of zero degrees means that one is

completely selfish, a 45 degree angle indicates that one maximizes the sum of the payoffs

to Self and Other, and an angle of 90 degrees would indicate that one only cares about the

payoff of Other. The size of the vector tells us how consistent the choices are. If all choices

are consistent with a certain preference the size of the vector will be 1000. In the examples

given above, the tangent of the angle is always positive. However, just as with the alpha in

our theoretical model also negative values are possible. The interpretation of these values

is analogous to a negative α, as they indicate that a person is willing to give something up

in order to decrease the payoff for Other. 6 The tangent that results from the test can be

interpreted as an indication of the initial alpha (α0) and will be used as such later on.

6situations where individuals prefer negative payoffs over positive payoffs for themselves are not taken
into consideration here and very seldom observed.
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After this SVO test the participants played 35 rounds of the Fragile Public Good (FPG)

game, explained above, in a partner setting (with a different partner than the ”other” from

the SVO task). In the introduction of the FPG game it was made clear that both taking

and contributing came at a cost. In order to check if players understood the game, they

had to answer quiz questions and played three trial rounds. In these trial rounds they

could also get acquainted to the feedback they would receive during the actual game. After

every round they saw the choice of the other player, their own payoff in the round they just

played and the payoff of the other, both of which were represented using numbers as well

as bars so as to visualize the difference between the payoffs.

After the first FPG game the participants were informed that a second one would follow,

again with a randomly matched partner but not the one from the previous game. Also this

game consisted of 35 rounds. The final task of the experiment task was another SVO test,

where the other in the test was now the same as in the final FPG game. This final test will

not be used in this paper.

3.2 Estimation

For our estimation procedure we follow Bault et al. (2016). To close the model and to

enable us to estimate it we introduce a random variable εik/θi as a noise term. Where θi

represents the rationality or choice intensity of player i. If we now assume εik to be i.i.d.

and double-exponentially distributed, we arrive at a multinomial logit model. Now let πikt

be the probability that a player chooses contribution k in period t, then if we multiply all

these probabilities we obtain our likelihood measure:

∏
t

πikt =
∏
t

eθiV
e
ikt∑

h e
θiV e

iht
0 < θ <∞ (8)

Estimation requires a value for α0, the tie parameter prior to any interaction with

the other player. In the estimation results shown in the subsequent sections we used the

measure taken from the SVO test. For those participants with an inconsistent tie measure

(the tie measure is considered inconsistent when the length of the vector is smaller than

600) we use α0 = 0. The model is estimated on the first FPG game.

In the group level estimations we set δ1i=δ1j , δ2i=δ2j and θi=θj for all i and j and

estimate the model using Matlab’s fmincon optimization procedure based on the likelihood
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described in equation (8). When calculating standard errors we clustered all observations

from the same individual.

4 Results

4.1 Descriptive statistics

The average angle of 128 participants in the SVO test was 6.03 degrees, which corresponds

to an α value of 0.11. The observations of 2 participants were lost due to technical problems,

while the choices of 8 participants were considered inconsistent because their vectors were

below 600 out of 1,000 in length (see Liebrand and McCLintock (1998)). The SVO tests

concerning those participants are, therefore, deleted from the analyses.

A summary of the behavior during the FPG games is given below in table 1. Looking at

table 1 there are some noteworthy results. First of all, we observe that average contributions

are noticeably higher in the second FPG game than in the first FPG game:

Table 1: Descriptive statistics

Game FPG1 (n=130) FPG2 (n=130)

Average contribution 2.28 2.86*

Avg contribution first round 1.26 2.53*

Avg contribution last round 0.68 0.70

% negative contributions 11.3% 4.6%

Note: * indicates significance at the 1% level,
using a Wilcoxon sign-rank test with contribu-
tions on the pair level.

This is also illustrated by figure 1, that shows the average contributions per round:
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Figure 1: Average contributions per round

The figure above suggests that behavior in the second game is definitively influenced by

the first game, as participants start off with much higher contributions. Furthermore, we

observe that between rounds 7 and 33 the difference between the games is fairly constant

at around 0.5, until the decline in the last couple of rounds (end-effect) leads to almost

identical contributions in the end.

Another difference between the two games concerns the number of destructive decisions.

While taking seems to play an important role in the first FPG game, its role in the second

one is diminished noticeably. The first game, though, shows that destructive behavior can

be relatively frequent even if there are plenty of opportunities to stay away from it. For

illustration, figure 2 shows two pairs that, respectively, establish a cooperative and a sour

relationship.

We find that only 1.5% (135 out of 9100) of the contributions are either larger than

5 or smaller than -5. Moreover, we do not find any instance of two players contributing

an unequal but constant amount for 3 rounds or more. This confirms our first hypothesis

(H1).

The rest of this section is organized as follows: Section 4.2 investigates the group level

estimation results, 4.3 is devoted to individual level estimates, while section 4.4 studies the

predictive performance of the model.
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(a) Positive ties formed (b) Negative ties formed

Figure 2: An example of a succesfully built cooperative relationship and a relationship that
has turned sour

4.2 Group level results

We start by estimating the myopic version of the model (labeled Myopic), represented by

eq. (1), neglecting for the moment forward looking behavior introduced in eq. (2). This

leaves a model with only 3 parameters. Despite its simplicity, this model has been found

quite succesful in explaining public good contributions (Bault et al., 2016).

Psychological studies (Baumeister et al. (2001)), suggest that people react to negative

experiences and emotions differently than to positive ones. Therefore, in our next model,

we will allow for differences between the impact of negative and positive impulses, again

using the myopic version of the model (M.NP), as formulated by eqs. (6a) and (6b).

The third model that we will investigate is the forward-looking model (FL), represented

by eqs. (2) and (4). And, finally, we estimate a model that allows for the aforementioned

difference between the strength of negative and positive impulses as well as forward looking

behavior (FL.NP).

The estimation results regarding these four models are found in table 2.
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Table 2: Group level estimations

γ θ δ1 δ2 δ2P δ2N

Myopic 0.16*(0.02) 0.54*(0.09) 0.10*(0.02)

M.NP 0.17*(0.02) 0.49*(0.10) 0.12*(0.02) 0.08*(0.02)

FL 0.06(0.06) 0.16*(0.02) 0.54*(0.10) 0.10*(0.02)

FL. NP 0.03(0.06) 0.17*(0.03) 0.49*(0.12) 0.11*(0.02) 0.08*(0.02)

Note: standard errors are between brackets;
* indicates significance at the 1% level.

The myopic model, as well as the other models, estimates θ to be around 0.16. To give

an idea about its interpretation, the predicted chance that a player with an α-value of zero

contributes zero is estimated to be about 30%. The chance that a player contributes one

as well as the chance that a player takes one is estimated to be about 20%, the chance

of contributing and taking 2 is about 10%, while all the other contributions together take

up the remaining 10% probability. For comparison, if θ would be 0 all choices have a

probability of 1
15 (< 7%), while if θ goes to infinity the probability of a player chosing zero

goes to 1. δ1 is estimated to be close to 1
2 , so if the other contributes zero the valuation of

the payoff of the other is halved. δ2 is estimated to be 0.1 which means that a contribution

of 5 would lead to an α of around 0.5, if the initial α-value is zero.

If we allow for a dichotomy between positive and negative impulses (M.NP) we find

similar θ and δ1 values. However, δ2P seems larger than δ2N . The improvement in the like-

lihood is significant at the 10% level (p≈0.09) even if we take just the average improvement

per subject as a single observation (and significant at the 1% level if all rounds from all

players are taken into account).7

We next consider the forward-looking model (FL), but neglect the potential difference

between positive and negative impulses for the moment. We find that γ is insignificant.

Only a modest improvement in the likelihood is obtained when compared with the improve-

ment caused by an extra impulse parameter in the myopic model (p>0.50 if we take the

average improvement per individual, p ≈ 0.10 if we take all contributions into account).

7It should be noted that the difference between δ2P and δ2N reported in table 2 is a conditional result.
Not all participants in our experiment where exposed to negative contributions and the ones that were
exposed to them are not an exogenously chosen or created group. The players that at any point in time are
faced with negative contributions are often also the ones that made negative contributions themselves. In
other words, this behavior shows up pairwise and pairs that make negative contributions are likely to have
different characteristics then pairs that do not make such contributions.
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The other parameters, θ, δ1 and δ2 are very similar to the values found for the myopic

model.

The full model (FL.NP) shows results that can be seen as a combination of the results

found for M.NP and FL. Positive impulses are again stronger in impact than negative

impulses, with parameter values similar to the ones of the myopic model, while δ1 is again

around 0.5.

An interesting result is that δ1 is estimated to be close to 0.5 in all model specifications,

which is consistent with earlier findings for two-player public good games (Bault et al.,

2016). The fact that this finding is replicated could indicate that in this type of environment

people, at least, weigh their history about as much as new information. It is also noteworthy

that at the group level 0.2 < δ2P
1−δ1 < 0.25 always holds, while 0.2 < δ2N

1−δ1 < 0.25 does not.

This indicates that our fourth hypothesis (H4) might not be correct and suggests that

(most, not all) people are able to form stable cooperative relationships, but do not sustain

long destructive relationships.

Furthermore, it is worth noting that we find that positive impulses seem to have a

stronger effect on the α parameter than negative impulses. This seems to contrast with the

findings summarized by Baumeister et al. (2001). However, there are studies that find that

the influence of a positive signal might weigh stronger than that of a negative signal, see

for instance King-Casas et al. (2005) and Rand et al. (2009). Another aspect could be the

earlier mentioned finding that people are not only more affected by negative experiences but

that they are also more motivated to get out of a negative situation. This result suggests

that we should reject our second hypothesis (H2).

Note, furthermore, that the difference between δ2P and δ2N could be influenced by

the fact that the myopic model does not allow for any forward-looking behavior. If (some)

players are in fact forward looking, this might be partially captured by the δ2-parameter(s).

If this was the case it would lead to a bias in the δ2-parameter(s), where the effect on δ2N

would be negative while the effect on δ2P would be positive. The reason is that if a player is

forward looking he or she wants to contribute more than if a player is not (as it is assumed

that the other will positively react). This positive effect on the contributions will lead to

δ2P being higher, while δ2N will be estimated to be lower (so that the effect will be less

negative). However, we see that also in the full model (FL.NP) this difference between
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positive and negative impulses still exists. This directly opposes our second hypothesis

(H2).

Moreover, the parameter γ, which is to capture the forward-looking behavior, is never

significantly different from zero at the 5% level.

4.3 Individual level results

From the individual level estimates we can see how many of our participants are able

to maintain stable cooperative or destructive relationships. We start by evaluating the

myopic model. We find that 104 out of 130 participants meet the conditions mentioned

in Proposition 4. This means that 80% of our subjects are able to build sufficient ties to

sustain cooperation. Of the remaining 26 participants, 10 have a ties mechanism that is

too strong to be efficient (they are not able to sustain an efficient cooperative relationship),

while the other 16 have an insufficiently strong tie mechanism. We find that in total 72 (36

pairs) out of these 104 participants are in fact cooperating efficiently in the final 10 rounds

(that is, in more than six out of the last 10 rounds both contribute equally and either 4 or

5 tokens). This is in line with proposition 4, stating that 0.2 < δ2i
1−δ1i < 0.25 is a necessary

but not a sufficient condition for stable and efficient cooperation. It, however, contradicts

our fourth hypothesis (H4).

When we allow for different parameters for positive and negative impulses we find -as

we did on the group level- for most participants the positive impulse parameter is larger

than the negative one: for 37 out of 130 participants δ2P>δ2N , for 15 participants δ2N>δ2P ,

and for two participants δ2N=δ2P= 0. Two participants did not receive any impulses, one

received only negative impulses, and the remaining 73 participants encountered just positive

impulses.

Shifting our attention to the forward looking-model now, we first investigate how many

individuals have an estimate of γ that is significantly different from zero. It turns out that

79 out of 130 participants are indeed forward looking (γ positive at the 5% level). This

seems to contrast with our previous finding at the group level, which might suggest a large

heterogeneity among subjects in their forward-looking behavior.

When we compare the results of the full model, however, the same pattern as found for

the group level is observed. Now, only 47 out of the 130 participants show forward looking
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behavior 8. Moreover, we still find that for 88 out of the 130 participants 0.2 < δ2Pi
1−δ1i < 0.25,

while most players do not seem to be able to sustain negative relationships, as for only three

participants we find that 0.2 < δ2Ni
1−δ1i < 0.25. There are also ten participants that build

excessively strong negative ties (i.e., α values smaller than -1). These findings might explain

why we observe some prolonged intervals of negative contributions and the existence of sour

relationships, as illustrated in figure 29. Looking at the evidence presented at the group as

well as at the individual level we must reject H4.

4.4 Predictive performance out-of-sample and model comparison

Now that we have estimated the Ties model both at the group level and the individual level,

we put it to a more difficult test. We investigate if our model is not only able to explain

behavior after the fact, but also to predict behavior in independent future rounds. Moreover,

we will compare its predictive performance with the performance of three other models: the

inequity-aversion model by Fehr and Schmidt (1999), the reinforcement learning model of

Roth and Erev (1995), and a model with a fixed weight attached to the payoff of the other

player (i.e., a fixed α).

In order to get truely out-of-sample predictions, we use the following procedure. We first

estimate the myopic model at the group-level, allowing for different positive and negative

impulse parameters. We choose the myopic model because the other models we compare

our model with do not allow for forward-looking behavior either. Moreover, this does not

affect the performance of our model too much as the additional parameter capturing this

effect is insignificant. First we estimate the model on the group-level, then we take the

contributions of the new other in the second game to calculate the α-values (for α0 the

values from the SVO test are used again), using the estimated parameters of the first game.

The predicted action is the choice that generates the highest likelihood according to (8).

Note that we do not re-estimate the model after every round and also do not readjust α on

the basis of choices made by the participants themselves in the second game. This allows

predictions to run away from the realized values. The fact that contributions in the second

8Not all participants encounter many negative impulses though, so this result is conditional on encoun-
tering enough negative impulses

9For more on this see Hoyer et al. (2014), where the occurrence of such relationships is further analyzed
with different experimental designs. The results of all the estimations mentioned above are available online.
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game were generally higher in the second game should make forecasting harder.

We use this procedure not only for the ties model but also for the other models of

social preferences and the basic reinforcement learning model referred to above. To make

forecasts for these models we use a similar procedure as described for the ties model.

For the fixed alpha model this means that we estimate the α parameter at the group-

level on the behavioral data of the the first FPG game and then use this estimates this to

predict the choices made in the second FPG game.

For the Fehr-Schmidt model we estimate, again at the group-level, the α and β param-

eters of the following expression for the expected utility of a particular choice k) V e
ikt, using

the behavioral data of the first FPG game and (8):

V e
ikt = Xe

ikt − α(Xe
jt −Xe

it)Xit<Xe
jt
− β(Xe

it −Xe
jt)Xit>Xe

jt
(9)

Where Xe
ht(h = i, j) denotes the expected payoffs calculated using either the expected

contribution of the other in the same round (participants were asked for this after every

choice made by themselves) or by the actual contribution of the other in the previous

round. When estimating this model, we find β to be larger than α for both specifications of

Xe
ht(h = i, j), which is contrary to the predictions and findings by Fehr and Schmidt, but

more often found in the literature (Yang et al., 2012). What is more problematic, though,

is that both α and β are estimated to be larger than 1, again violating the assumptions of

the model. Note that β>1 implies that one would prefer to throw away a dollar to diminish

inequality with one dollar. Because of the clear lack of support for this model we will not

further consider it below.

In the Roth and Erev model of reinforcement learning players learn the value of certain

actions by playing them. The higher the payoff after playing a certain action the more this

action gets reinforced, meaning that the probability of choosing this (or a similar) action

increases. In the three parameters version of the model used here: s denotes the strength

(or speed) of learning, indicating how much the chosen action is reinforced, φ stands for

a decay effect that captures the speed by which the attraction of an action diminishes

over time, and E denotes an experimentation effect that represents the reinforcement of

adjacent choices. To get to estimates we use a similar procedure as explained in Erev and

Roth (1998), meaning that all probabilities of an individual i choosing an action k at time
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t (πikt) are inititially the same, as the attraction of each choice qikt is assumed to be the

same q at the beginning of the game. After a choice is made (zero is chosen as the first

prediction in this exercise) the distance (R) between the realized payoff and the minimal

payoff, combined with the effect of the parameters, determine the new attraction of choices

and thereby the choice probability distribution in the round thereafter. More precisely:

πikt = qikt/
∑
h

qiht

qik1 = qih1 = q

qikt+1 = (1− φi)qikt + Eikt

Eikt = siRjt(1− εi) if k = j

Eikt = siRjt(εi/2) if k = j ± 1

Eikt = 0 otherwise

(10)

Another interesting model for explaining behavior in dynamic settings was introduced

by Camerer and Ho (1999). Their Experience-Weighted Attraction (EWA) learning model

not only allows for learning via payoffs, but also that players may learn over time what other

players are likely to do. Although this kind of belief learning is undoubtedly important in

many economic settings, it should not affect behavior in our game, as in our game the net

return on a contribution vis-à-vis that of another contribution of a player does not depend

on the contribution of the other player but only on his or her own contribution.

Finally, we mention the ’types’ model of Levine (1998), a social preference model that

may appear similar behaviorally, but is conceptually quite different from the ties model. In

this model the weight an individual i attaches to the utility (uj) of another individual j is

dependent on one’s own (constant) altruism parameter (αi), the belief about the altruism

parameter of the other (αj) and a parameter λ that weighs both, such that i’s utility (ui)

gets transformed into an extended utility, vi:

vi = ui +
αi + λαj

1 + λ
uj (11)

Although this model assumes unexplained fixed altruistic parameters, there is some simi-

larity with the ties model. If the contributions of the other player are seen as signals of that
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player’s altruism level, these signals would then change the belief of the other’s altruism

level and thereby the weight one attaches to his or her utility (α). Because the model does

not specify the belief updating process, let alone how to apply it in our setting, we do not

further consider it here.

Our discussion of social preferences models and the learning model of Roth and Erev,

reflects that only a few social preference models available are able to make predictions for

the dynamic behavior in our games. This is not surprising, as most theoretical models are

not designed to explain dynamics.

For the predictions regarding the second game, we again use the choices with the highest

likelihood of being chosen, given the parameters estimated on the behavioral data of the

first game. Table 3 presents the mean absolute error and the mean squared error of the

predictions:

Table 3: Out-of-sample prediction with group-level estimates

Model Mean Absolute Error Mean Squared Error

Ties Model 0.51 (0.53) 1.65 (2.39)

Fixed Alpha 1.92 (2.41) 6.97(14.05)

Roth and Erev 1.64 (1.07) 4.39 (4.59)

Note: standard errors using average errors per individual between brackets

From our results in table 3 we can conclude that the Ties model seems to perform

best, supporting our fourth hypothesis. This is confirmed by Wilcoxon signed rank tests

with the average error (for both squared and absolute errors) per individual as observations.

These tests show that this model outperforms the other models when it comes to predicting

(p<0.01 for all tests). Furthermore it is interesting to note that especially the reinforcement

learning model by Roth and Erev does not do a good job when it comes to predicting

behavior out of sample as it’s mean absolute prediction error is more than three times

higher than that of the Ties model.

As an alternative test we check how individual-level estimations perform. We use the

same procedure as with the group-level estimates, but now each player’s predicted choice

is calculated using individual estimates. Table 4 shows the results.
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Table 4: Out-of-sample prediction with individual estimates

Model Mean Absolute Error Mean Squared Error

Ties Model 1.00 (1.11) 3.58 (5.61)

Fixed Alpha 1.69 (1.72) 6.11(12.68)

Roth and Erev 3.01 (1.47) 11.63 (7.21)

Note: standard errors using average errors per individual between brackets

Again it turns out that the Ties model performs significantly better than the learning

model and the fixed alpha model, supporting our fourth and final hypothesis. Note, though,

that with this specification both the Ties and the reinforcement learning model, and espe-

cially the reinforcement learning model, performs worse than when group-level estimates

are used. This may seem surprising, but is caused by the fact that some individuals experi-

ence very little variation in impulses in the first FPG game, making it difficult to estimate

their individual parameters precise.

5 Applying the Ties Model to the Repeated Prisoner’s Dilemma

The Ties model gives an explanation for the development of cooperation or antagonism that

is quite different from the rest of the literature, as it focuses on changes in social preferences

generated by interaction experiences rather than on given (fixed) social preferences or simple

heuristics represented by automata. In this section we will explore a connection to another

strand of research focusing on the evolution of behavior in repeated games, specifically

studies by Dal Bó and Fréchette (2011) and Fudenberg et al. (2012). To understand the

strategies people use when placed in environments that are either well- or ill-suited to

generate cooperation, they have subjects play multiple repeated Prisoner’s Dilemma (PD)

games with continuation probabilities between 1/2 and 7/8. Using maximum likelihood

estimation procedures, they estimate the share of a series of simple strategies, or automata,

such as tit-for-tat (TFT), always defect (AD), and tit-for-two-tats (TF2T). Fudenberg et al.

(2012) find that, if cooperation becomes more profitable, people become ’slower to anger’

and ’faster to forgive’, this is, they are more willing to allow a defection and pick up

cooperation after only a few cooperative choices of the counterpart. This is reflected in the

presence of a strategy like TF2T in these environments. This section serves to illustrate how
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different parameter combinations of the Ties model, and their estimates, can generate (or

mimic) these strategies as well as a the shift towards more lenient and forgiving strategies

as cooperation becomes more attractive. In Appendix C these arguments are worked out

in more mathematical detail.

We start our Ties model-based analysis of the PD game by introducing other-regarding

preferences. We do this by adding the α-weighted payoff of the other to a player’s payoff.

Starting from a general representation of a PD game without any other-regarding pay-

offs (see Table 5a), we apply these other-regarding preferences to two specific games with

benefit/cost (b/c) ratios of 2 (Table 5b) and 4 (Table 5c). These examples are chosen for

comparability with the games found in Fudenberg et al. (2012). What stands out from these

new payoff matrices is that defecting is now no longer necessarily the dominant action. If

α is lager than 1/2 (in Table 5b) or 1/4 (in Table 5c) cooperation becomes dominant. If we

now define the impulse generated by a cooperative choice to be of size one and the impulse

from defection by the other to be of size zero (as this is the Nash equilibrium action of the

stage game), we can apply a similar model as the one we introduced for the public good

game (see below).

Table 5: Prisoner’s Dilemma (with other regarding preferences)

(a) b/c

C D

C b-c -c

D b 0

(b) b/c=2

C D

C 1+1α -1+2α

D 2-α 0

(c) b/c=4

C D

C 3+3α -1+4α

D 4-α 0

Note: Table 5a gives the actual payoffs of player 1, while 5b and 5c give the valuation
of these payoffs by a player that also cares about the other player. C stands for
cooperation, and D for defection.

Both Dal Bó and Fréchette (2011) and Fudenberg et al. (2012) find experimental

evidence that many subjects in their experiments use either a tit-for-tat (TFT) or a tit-for-

two-tats (TF2T) strategy although these strategies are often not evolutionary stable (in a

evolutionary game theory context).10

10TFT requires a player to start with choosing C and, subsequently, to choose whatever his opponent
did in the previous round. Thus, after observing C (D) the player chooses C (D). If a player starts with
D first instead of C, the strategy is labeled DTFT. TF2T requires a player to always choose C, unless his
counterpart chose D in the previous two periods. If a player starts with D first instead of C, the strategy
is labeled DTF2T. Dal Bó and Fréchette estimate that for their games with a continuation probability of
3/4 between 35% (if b/c≈2) and 56% (if b/c ≈ 4) of subjects choose TFT. Fudenberg et al., who consider
many more strategies and introduce noise, find between 19%, for b/c=1.5, and 7%, for b/c=4, of players
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Below we will show that the simple and neurobiologically underpinned Ties model (Bault

et al. (2015)) can help explain the behavior observed in these experiments.

The previously mentioned studies combine the simplicity and descriptive power of strate-

gies like tit-for-tat with sophisticated estimation procedures that illustrate the popularity

of these strategies among experimental subjects. They do not, however, explain why and

when exactly players switch to different strategies when the cost/benefit ratio in a PD game

environment changes. Using the Ties model we can fill this gap and predict different behav-

ior for different b/c ratios. lt also allows us to test if the behavior of subjects is consistent

between different specifications of the same game. While the previously mentioned stud-

ies do not attempt to explain why subjects use different strategies within the same game

environment, our method does not attach a single strategy to an individual or even to an

individual in a particular interaction. Another advantage is that applying the estimated

Ties model allows us to see if the tie mechanism and resulting strategies are consistent

across different, albeit related, games regarding social dilemmas.

An example of a strategy that is easily generated by the tie mechanism is the wellknown

TFT strategy. According to this strategy, a player starts with cooperating (choosing C)

and, subsequently, simply chooses whatever his opponent did in the previous round. Thus,

after observing C (D) the player chooses C (D). If play starts with D first instead of C, the

strategy is labeled DTFT. For the tie mechanism to generate such behavior, the following is

required: First, a player should have a strong enough impulse parameter δ2 (the exact size

depends on the b/c ratio). Secondly, the memory of this player must not be too strong, as

otherwise a strong tie can be built up that tolerates deviations by the other player. Hence,

the tie-persistence parameter δ1 must be sufficiently small. Finally, α0 determines whether

play starts with C (for TFT) or D (for DTFT).

If we allow players to start with α0 6=0 we find in appendix C that, for certain parameter

values of δ1 and δ2, play starts to mimic often reported strategies like AD, TFT, and TF2T.

However, a much more challenging task is to use the parameter value estimates of this

paper and see to what strategies these parameter estimates correspond, a task to which we

turn next. Besides the before-mentioned strategies we also investigate a modified strategy:

’qualified’ tit-for-two-tats (QTF2T). This strategy is similar to TF2T in all but one respect:

choosing TFT in contrast 20% players choose TF2T when b/c was 4, only 5% of players chose TF2T when
b/c was 1.5 as can be found in table 7. Dal Bó and Fréchette do not consider TF2T.
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it requires more than one cooperative choice by the other before defection (D) is forgiven.

In terms of the Ties model this means that first the value of α has to be significantly

built up; in this case, described in appendix C.3, until the theoretical maximum ( δ2
1−δ1 ),

but any value corresponding to any number of consecutive cooperative decisions can be

chosen. The intuition behind this ’qualification’ is that players using TF2T are vulnerable

to exploitation. Other players could exploit them by alternating between C and D. Since

it seems unlikely that players would accept such exploitation we require the other player

to show good intentions for a longer period, before these strategies become ’forgiving’. In

Appendix C the case for b/c = 4 is worked out.

For a sensible comparison between the parameter estimates found in this study and

those relevant for a PD environment we need to normalize the impulse, I. For, note that

if we multiply the impulse by a factor i, the estimate of δ2 will change with factor 1/i.

Therefore, we normalize by assuming a cooperative action in a PD game to be equivalent

with a fully Pareto efficient action (C=4) in our FPG game and defining the impulse in

that event to be equal to In ≡
Cj−Cref

J

Ceff−Cref
J

. Thus, in order to translate the values we found

for δ2 to values suitable for a PD game environment, where choosing C (the efficient choice)

is valued as 1, we multiply δ2 by 4. As before α0 will stand for the starting value of α.

Below there are two graphs, the first for b/c = 2 and the second for b/c = 4, which

show which parameter values of the tie mechanism (δ1 and δ2) correspond to which strate-

gies11. The lines mark the conditions for which the Ties model predicts the behavior of the

strategies mentioned earlier. The crosses in the graph represent the different individuals in

our experimental study, using normalized δ2P (as only positive impulses are possible in this

environment) and δ1 values, estimated with the myopic model that allows for a dichotomy

between positive and negative impulses.

11for characteristics of these strategies and a more elaborate analysis, see Appendix C.
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Figure 3: Parameter estimates and strategies for b/c=2
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From these figures it becomes clear that for a lower b/c ratio the same players ’switch’

from cooperative strategies to strategies which imply more defection. It also shows that

in the b/c = 4 setting, (D)TFT, TF2T and related strategies are commonly found, as in

Fudenberg et al. (2012). There is however also a noticeable difference, the lack of players

playing the AD strategy. A potential reason for this might be the possibility in our Fragile

Public Good Game to destroy the public good, which could make players reluctant to not

contribute, out of fear for punishment. This is highlighted by the fact that if we use the

estimates from the myopic model that does not allow for a difference in impulse impact

there are some more AD players, as δ2 is typically estimated to be lower in this case.

Observations that are to the right of the top-left bottom-right diagonal represent players

with a very strong tie mechanism as continuous cooperation by the other player would lead

to an α-value greater than one.

Finally, it is interesting to note that the Ties model could also explain the repeated

PD finding of Breitmoser (2015) that if one player chooses C and the other D, both show

an about equal probability of playing C in the next round. This is presented as evidence

against the existence of TFT. If one thinks in terms of a tie mechanism this finding may not

be so surprising. After all, if a player played C in the previous round his or her α value must

have been relatively high, while if a player played D this value must have been relatively

low. Now, because the tie (α) of the former player will decay (as it gets multiplied by

δ1) the chance that this player chooses C declines. In contrast, the tie of the other player

will be reinforced (with δ2) by counterpart’s cooperative action in the previous round.

Consequently, the α values will move towards each other. In short, as one tie is initially

relatively strong (reflecting a higher probability of playing C) and becomes weaker, while

the other tie is relatively weak (reflecting a higher probability of playing D) and becomes

stronger, the chances to play C for both players converge, making the finding of Breitmoser

explicable by a tie mechanism.

6 Conclusion

We conclude with a summary of our main findings. First of all it turns out that the

estimation results of our Fragile Public Good Game are very much in line with earlier
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studies of public goods games using the ties model. More specifically, we also observe that

the memory component of the tie mechanism, represented by the tie persistence parameter

δ1, is about equally important as the impulse component, represented by the parameter δ2,

with the scalefree δ1 being estimated to be close to 0.50.

In contrast to our original hypothesis we find that positive impulses have a stronger

impact than negative ones. Apperently, the bad is not stronger than the good in this

context cf. (Baumeister et al., 2001). This asymmetry in the tie mechanism is helpfull in

getting cooperation going, while not rendering cooperators defenseless against people that

are just trying to benefit from them. We also find that players do not seem to be very much

forward-looking.

Our out-of-sample predictions show that the Ties model significantly outperforms both a

well-known reinforcement learning model as well as a model with constant social preferences.

For both the learning model as well as the Ties model we find that the predictive power

improves if we use group-level instead of individual-level estimates. This appears to be due

to the lack of behavioral variability for some of our subjects.

The Ties model also generated insights for a (repeated) Prisoner’s Dilemma (PD) game

context. Strategies observed in experiments can be understood with the help of the Ties

model. Moreover, using the estimated parameters from our public good game, the model

helps explain why people switch to different strategies when faced with a different cost-

benefit ratio in the PD game. Our alternative explanation for the behavior in repeated PD

games does not require people to switch strategies in a seemingly ad hoc way.
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Appendices

A Proof of Propositions

A.1 Proposition 1: Contributions outside of −5 ≤ Cit ≤ 5 can never be
part of any equilibrium if −1≤α≤1.

We use the fact that our agents can only change their decision in discrete steps. Subtracting

V (Cit) from V (Cit + 1) we get:

V (Cit)− V (Cit + 1) = 2Cit + 2− 10α+ γ(−10 + α(2γCit + 2(1− γ)Cejt + γ + 1)) (12)

Where γ is between 0 and 1. For the proposition to be true this equation must be positive.

We reformulate this condition to:

2Cit + 2 + 2αγ
(
γCit + (1− γ)Cejt +

1

2
γ +

1

2
) > 10(α+ γ

)
(13)
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We begin by only looking at equilibria with symmetric contributions (Cit = Cjt).

2Cit + 2 + 2αγ(Cit +
1

2
γ +

1

2
) > 10(α+ γ) (14)

So at Cit = 5 we have:

12 + 2αγ(5 +
1

2
γ +

1

2
) > 10(α+ γ) =>

12 + α
(
γ(11 + γ)− 10)− 10γ > 0

(15)

This last statement is always true for -1<α<1, since if α is one we have:

12 + 11γ + γ2 > 10(γ + 1) (16)

Which is always the case. If α is -1 we have:

12− 11γ − γ2 > 10(γ − 1) (17)

Now since (15) is a monotone function in α these results hold for the entire interval.

We can use the same method to show that V (Cit > V (Cit − 1) always holds when

Cit ≤ −5. At Cit = −5 the equivalent of (15) is:

− 12 + 2αγ(−6
1

2
+

1

2
γ) > 10(α+ γ) (18)

This is never true for positive α’s. For α is -1 we get:

− 12 + γ(13− γ) > 10(γ − 1) (19)

This cannot be for true for γ between zero and one either.

For the asymmetric equilibria we have to go back to (13). The left side is increasing in

Cejt for α > 0 and decreasing when α < 0. To see if there are instances where contributing

6 is preferred to contributing less we therefore only need to check for Cejt = 1. This gives:

12 + 2αγ(5γ + (1− γ) +
1

2
γ +

1

2
) > 10(α+ γ) (20)
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Again this is always true for 0 ≤ α ≤ 1 (and if the other contributes positively, α cannot

be negative in an equilibrium). A similar procedure can be used to show that no choice

more negative than -5 can be part of an equilibrium.

A.2 Propositon 2.2: All symmetric equilibria with −5 ≤ Cit ≤ 5 are pos-

sible.

For a stable situation we need a value for α such that V (Cit − 1) < V (Cit) > V (Cit + 1)

holds and we need that after (infinitely) repeated play of Cit this still holds. We start by

investigating the case in which here agents are not forward looking (γ is zero).

A.2.1 Myopic Agents

We first look at the case in which both contributions are positive. In this situation equation

(14) simplifies to:

2Cit + 2 > 10α (21)

From (21) we with every increase of α by 0.2 the contribution that gives the highest value

shifts one up. For an equilibrium to be sustainable we need the α-value to be stable (in a

steady state) for a the given contribution. So we use (5), and look for:

α = δ1α+ δ2I (22)

For I we use the Nash equilibrium as a reference point as we did throughout the paper.

This leads to:

α = δ1α+ δ2C

or

α =
δ2C

1− δ1

(23)

From (21) we know that:

0.2C < α < 0.2(C + 1) (24)
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Combining (23) and (24) we obtain:

0.2 <
δ2

1− δ1
< 0.2 + (0.2/C) (25)

If we look at the same situation (γ=0) for negative values (more precise for C≤-2, we will

discuss the situations in which C is 0 or -1 later) we change (21) into:

2C > 10α (26)

So also in the equation above we see that the best response changes with every increase (or

drop) in α of 0.2. Following an analogous procedure to the one we used for a positive C we

obtain the following condition:

0.2 >
δ2

1− δ1
> 0.2− 0.2

C
(27)

If C=0, then the stimulus is zero. This will lead to the value of α moving gradually

towards zero as well. As the best response to an α-value of zero is to play 0 we have that

the [0,0] equilibrium can always exist regardless of the δ-parameters. To the entire range

of α-values wherefor a contribution of zero is a vest response we use (26) and observe that

as long as α>-0.2 the value of playing zero is bigger then the value of -1. This gives us

the lower bound α=-0.2. Now for the higher bound we have to see when playing 1 is more

attractive then playing 0. From (21) we find that this boundary is 0.2.

A.2.2 Forward Looking Agents

If γ is unequal to zero all values of Cit are still part of symmetric equilibria, but the condition

on δ1 and δ2 becomes stricter. Just as in the previous case we start from (14) and fill in

(23):

2C + 2 + 2
δ2C

1− δ1
γ(C +

1

2
γ +

1

2
) > 10(

δ2C

1− δ1
+ γ)

2C + 2 > (10− 2γ(C +
1

2
γ +

1

2
))

δ2C

1− δ1
+ 10γ

(28)
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2C + 1− 10γ

(10− 2γ(C + 1
2γ + 1

2))C
>

δ2
1− δ1

(29)

If 10− 2γ(C + 1
2γ + 1

2 < 0 the inequality changes direction.

We also fill in the lower bound we obtain:

2C − 10γ

(10− 2γ(C − 1 + 1
2γ + 1

2))C
>

δ2
1− δ1

2C − 10γ

(10− 2γ(C − 1 + 1
2γ + 1/2))C

<
δ2

1− δ1
<

2C + 2− 10γ

(10− 2γ(C + 1
2γ + 1

2))C

(30)

We can repeat this procedure in the negative domain and get the following condition:

2C − 2− 10γ

(10− 2γ(C − 1 + 1
2γ −

1
2))C

>
δ2

1− δ1
>

2C − 10γ

(10− 2γ(C + 1
2γ −

1
2))C

(31)

A.3 Proposition 3: Asymmetric equilibria exist if CiCj > 0 and |Ci| ≤ 5

and |Cj| ≤ 5

For simplicity we restrict ourselves to myopic agents. This changes (23) into:

α =
δ2Cj

1− δ1
(32)

And (24) changes into:

0.2Ci < α < 0.2(Ci + 1) (33)

Leading to:

0.2
Ci
Cj

<
δ2i

1− δ1i
< 0.2

Ci
Cj

+
0.2

Cj
(34)

In order for this situation to be an equilibrium we also need:

0.2
Cj
Ci

<
δ2j

1− δ1j
< 0.2

Cj
Ci

+
0.2

Ci
(35)

Looking at the extreme case of a [1,5] equilibrium this implies:

0.04 <
δ2i

1− δ1i
< 0.08 (36)
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And:

1 <
δ2j

1− δ1j
< 2 (37)

While such an equilibrium is mathematically possible, for it to be maintained the two

players have to be quite different.

There are no equilibria where one player contributes a negative amount while the other

contributes a positive amount. Constant negative contributions eventually create a negative

α in the other and contributing positively can not be an optimal choice under a negative

α.

A.4 Proposition 4: For the socially optimal choices to be a stable equi-

librium under the myopic model, both players satisfying 0.2 < δ2i
1−δ1i <

0.25 is a necessary, but not a sufficient condition.

This result is a directly visible in (25) if we plug in 4 as the contribution level. (25) also

shows that if a player has the characteristics to be in a socially optimal equilibrium he or

she is also willing to conform with any other (non negative) symmetric equilibrium with

lower contributions.

B Reference Point

In this part we will evaluate the model fit for different reference points in our model. In

this section we restrict ourselves to the myopic version of the model, allowing for different

positive and negative impulse parameters (as this was the best predicting model). We have

for the size of the impuls:

Iijt = Cjt − Crefi (38)

The definition of the reference contribution Cref is not trivial. Several points are how-

ever appealing from a theoretical standpoint. The first candidate that we consider is the

point that we chose in the main paper, the contribution that an agent chooses in a one-shot

Nash equilibrium (Cref = 0). Another static option is the use of the Pareto optimal con-

tribution as a reference point (Cref = 4). It is also possible that the reference point is not

static and depends on either an agent’s own behavior or the previous behavior of the other.

We test the predictive performance for two such reference points: Creft = Cit if an agent’s
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own contribution is used and (Creft = Cjt−1) if one looks at the contribution of the other

in the previous round. In the last two cases we initialize the system using Cref1 = 0. In the

table below the parameters from estimating the model using different reference points are

shown.

Table 6: Estimates for different reference points

Reference point δ1 δ2P δ2N
∑
LL

Nash 0.490 0.115 0.080 -8545

Pareto 0.975 0.108 0.000 -11265

Own Contribution 1 0.003 -0.006 -11598

Contribution other 0.989 0.179 0.160 -10826

From the table we see that using the Nash solution as a reference point produces to

the highest likelihood. It is also interesting to note that with dynamic reference points δ1

is estimated to be very close to 1. A reason for this might be that if two players are in a

positive symmetric equilibrium (where Cit=Cjt for multiple rounds) the value of α goes to

zero (or might even go negative in case of the pareto optimum being the reference point)

as all the impulses are zero. We observe these equlibria quite regularly in our dataset.

The only way for the models with these particular reference point specifications to keep α

high, which is necessary for positive contributions to occur, is for δ1 to approach zero. A

side effect of this is that with δ1 ≈ 1 players basically have an infinite memory and early

impulses have the same effect as new ones. Judging on the basis of the likelihood, though,

this is not the case.

Also the Pareto optimum does not perform well. This can be due to the fact that using

this reference point even positive contributions might lead to a negative α and thus to

the strange situation that if δ2N > 0 positive contributions by one player would lead to

(expected) negative contributions by the other. This would lead to a negative spiral, that

we hardly ever observe in the data.

We thus conclude that, if we use (6a), (6b) and (38) to model the tie mechanism, then

Cref = 0 is the best rule to use for the reference point.

It is interesting to see that if we focus on ∆α=(αt−αt−1) in a positive and symmetric

equilibrium, we get into a situation where the change in α is basically determined by the
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change in contributions since the initial value of α diminishes over time. If we start from

the basic tie mechanism described in (5) we have (with I = Cjt):

αij2 = αij1δ1i + δ2iCj1 => αij3 = αij1δ
2
1i + δ1iδ2iCj1 + δ2iCj2 =>

αijt = αij1δ
t−1
1i + δt−21i δ2iCj1 + ...+ δ1iδ2iCjt−2 + δ2iCjt−1 =>

αijt ≈
δ2iC

1− δ1i
(for t –> ∞)

(39)

Consequentle, for ∆α it holds in this situation:

∆αit+1 = αit+1 − αit = δ1iαit + δ2iCjt − αit =>

∆αit+1 = δ2iCjt − (1− δ1i)αit ≈ δ2iCjt − (1− δ1i)
δ2iC

eq

1− δ1i
= δ2i(Cjt − Ceq)

(40)

In the symmetric equilibria (the most commonly observed equilibria in our experiment) we

have that, when the reference point with respect to α is fixed, the change in α approximates

a linear function of the change in the other player’s contribution.

C Tie Model Parameters for different Repeated PD Strate-

gies

C.1 Introduction

In this section we look at a number of strategies for the repeated prisoner’s dilemma game

and determine which combinations of parameters in the tie model are compatible with those

strategies. This analysis provides the basis for the hypothetical distribution of strategies

presented in section 5, which we derived based on our parameter estimates from the fragile

public good game. We take a prisoner’s dilemma game of the following form, which corre-

sponds to Fudenberg et al. (2012)’s b/c=4 case (only the required α-values will change in

the analysis below if one uses other b/c ratios):
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Table 7: Prisoner’s Dilemma with b/c=4

C D

C 3,3 -1, 4

D 4,-1 0,0

We start from the basic Ties model in which agents have the following extended utility

function:

Vit = Uit + αijtUjt (41)

Where Vit denotes the extended utility of player i at time t and Uit and Ujt stand for the

direct own utility (payoff) of i and j, respectively, at time t, while αijt represents the weight

i attaches to the utility of j (i’s tie with j) in period t, which is updated as follows:

αijt = δ1iαijt−1 + δ2iIt−1 (42)

With αij1 denoting the initial tie. We define the impulse It−1 to be the scaled amount

by which the other deviated in the previous period from the standard (one-shot) Nash

equilibrium choice. If the other player cooperated in the previous period the impulse

equals 1, if the other defected it equals 0. In this model the choice between cooperating

and defecting is fully dependent on the level of α. If α is larger than 1/4 cooperating is

a dominant choice while for α smaller than 1/4 defecting is dominant, as in the standard

models.

Both Dal Bó and Fréchette (2011) and Fudenberg et al. (2012) find experimental

evidence that many subjects in their experiments use either tit-for-tat (TFT) or tit-for-

two-tats (TF2T) as a strategy. In this exercise we will see if the simple and neurological

underpinned Ties model (Bault et al., 2015, 2016) could explain the behavior described by

these strategies.

C.2 Tit-for-tat

The TFT strategy is simple: A player begins by playing C and simply imitates the other

player’s action in future periods. We can derive conditions on the ranges of parameters δ1,

δ2, and αij1 for which this behavior is sustained. First, we investigate what levels of α can
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be reached after continuous play of either C or D. Since δ1 < 1, being exposed to infinitely

repeated defection leads to α going to zero. Now, what about continous play of C? Noting

that the initial value of α vanishes as t goes to infinity, we start from the expression for α

in period 2 and iterate:

αij2 = δ1iαij1 + δ2iI1 => αij3 = δ21iαij1 + δ1iδ2iI1 + δ2iI2 =>

αijt = δt−11i αij1 + δt−21i δ2iI1 + ...+ δ1iδ2iIt−2 + δ2iIt−1

(43)

Furthermore, if C is played, I is always equal to one, so that:

αijt = δt−11i αij1 + δt−21i δ2i + ...+ δ1iδ2i + δ2i :=>

αijt ≈
δ2i

1− δ1i
(as t –> ∞)

(44)

This is an important result as it gives an upper limit to the alpha level that can be

reached in an infinitely repeated game. Now that we have established both the upper and

the lower limit for α ,we can check the conditions for which the behavior according to the

ties model is identical to the TFT strategy. The first condition is simply that the first action

must be to play C. This leads to the simple condition (omitting the i and j subscripts, for

convenience):

α1 ≥ 1/4 (45)

We also need that, no matter how high the current level of α is, after only one period

of D played by the other, a TFT player weakly prefers D over C. Using eqs. (42) and

(45), it follows that the tie value of a player who experienced infinitely repeated C and one

period of D is equal to δ1δ2
1−δ1 . Since D can only be weakly preferred if α ≤ 1/4, we get the

condition that:

δ1δ2
1− δ1

≤ 1/4 (46)

On the other hand, we also need that, no matter how low α is, after only one period of

C played by the counterpart C is weakly prefered over D, which requires (as α≥0):

39



δ2 ≥ 1/4 (47)

By combining (46) and (47) we find that δ1 ≤ 1/2 should hold. The intuitive explanation

for these values is that a player has to be sufficiently sensitive to a changed impulse and

must not have too strong of a ’memory’.

C.3 Tit-for-2-tats

After having defined the Tie-model parameters for which TFT is the resulting strategy,

we now repeat the same exercise for the TF2T behavior. As this strategy also starts with

playing C, we need (45) to hold. Furthermore, even after continuous D play, after only one

period of C by the counterpart, C should be weakly dominating D, so (47) should hold as

well.

Before we proceed with imposing further restrictions, we have to decide how strict we

want to be in our interpretation of the TF2T strategy. If we take it at face value we have

to assume that even after a history like DDDDDDCD a player will still be patient and

play C. It also implies that this player would constantly play C against a counterpart that

keeps alternating between C and D. In order to account for such phenomena we evaluate

two different versions of TF2T, one that takes the strategy literally and one that requires

multiple periods of C before the trust in the other is restored. For convenience, the latter

version will be called ”qualified tit-for-two-tats” (QTF2T). For the standard TF2T we need

that, even if we start out with α = 0 and the other player cooperates in one round, only

to defect immediately thereafter, a player would still reply with C to that D choice. This

requires that:

δ1δ2 ≥ 1/4 (48)

In addition, we need that, even at the highest possible level of α, after two periods of

D a player wants to choose D, which requires (using eqs. (45)):

δ21δ2
1− δ1

≤ 1/4 (49)

Combining (48) and (49) gives:
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δ1
1− δ1

≤ 1 or δ1 ≤ 1/2 (50)

So we have:

δ2 ≥ 1/2 (51)

A potential problem for the result above is that the upper bound of α, δ2i
1−δ1i , will be

larger or equal to 1 (with equality only if δ1=δ2=1/2), since if we combine (48) and (44) :

δ2
1− δ1

=
δ2δ1

δ1(1− δ1)
≥ 1

4(δ1(1− δ1))
=>

δ2
1− δ1

≥ 1

(52)

This ’problem’ can be solved by using a QTF2T strategy where we assume here (for

simplicity) that the value of α must be maximized for a player to play C after the other

player chooses D. In this case, it is required that:

δ1δ2
1− δ1

≥ 1/4 (53)

41



D Payoff Matrix and SVO Example

Figure 5: Payoff Matrix

Figure 6: SVO example
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