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In this chapter we first give a short overview of Learning to Forecast (LtF) experiments, 

thereby focusing on the differences between markets with positive and negative 

expectations feedback. Subsequently, we discuss how the results of these experiments can 

be used to predict behavior for more complicated market environments that exhibit both 

types of feedback. In particular, we will consider the case where a futures market is 

connected with a spot market. 

 

1. Learning to Forecast experiments 

Market behavior is often driven by expectations about future market prices. An investor 

who expects a stock to increase (decrease) in value in the near future, will increase 

(decrease) her position in this stock in order to reap potential capital gains. A producer of an 

agricultural product who expects that the market price will be high (low) by the time he will 

be able to harvest and sell his crop, will sow more (fewer) seeds. To get a better 

understanding of the functioning of markets, we need to understand how market 

participants form expectations, and how these expectations affect price dynamics and 

market outcomes.  

Analysis of individual market behavior alone, such as buying and selling decisions in 

financial markets or supply decisions in production markets, will typically be insufficient to 

determine the underlying price expectations. If an investor purchases a specific stock, we 

may conclude that this investor expects a high future price of this stock, but it does not 

reveal how high he expects this future price to be exactly. Even if we know this investor’s 

exact willingness to pay for this stock, we will still not know his price expectation, unless we 

know the utility function of this investor exactly (and even then, we would have to rely on 

the assumption that his trading behavior is optimal given his beliefs). 
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This problem can be addressed by using laboratory experiments to measure 

expectations about future market prices directly. This can be done through so-called 

Learning to Forecast (LtF) laboratory experiments, where the only task of participants is to 

predict future market prices (or some other economic variable, such as inflation). 

Participants in these LtF experiments do not trade themselves; a computer algorithm 

calculates the optimal trading behavior given the forecasts of the participants active in the 

same market, aggregates these trading decisions and determines the resulting market price 

(typically the price that clears the market).1 The earnings of the participants are determined 

by their forecast errors: if their predictions are more accurate, participants earn more. In 

that sense, the participants are more like professional analysts than private investors or 

producers.2  

Participants typically have to predict prices for about 50 consecutive periods and can 

observe the past market prices and their own past predictions, but not the predictions of 

other participants. They also do not know the trading strategies of the investors or 

producers they advise, or the price generating mechanism. However, participants are given 

qualitative information about this, so that they have some idea about the effect their 

prediction will have on the market clearing price (note that exact knowledge of the 

 
1 Aggregate market behavior in laboratory experiments where participants do trade themselves is very similar 
to aggregate behavior in LtF experiments (see Bao et al., 2013, and Bao et al., 2017). This suggests that 
focusing on the expectation formation process still allows us to capture the most important features of market 
dynamics. This is further supported by laboratory experiments where participants have to trade and have to 
submit (long-term) price forecasts as well, see e.g. Haruvy et al. (2007) and Hanaki et al. (2018). These studies 
show that price forecasts are consistent with trading behavior, and that adding the forecast elicitation task 
does not change trading behavior (provided participants are only rewarded for trading, or only for their 
forecasts, see Hanaki et al., 2018). 
2 The task is typically explained to the participants as follows. In positive feedback markets: “You are a financial 
advisor to a pension fund that wants to optimally invest a large amount of money. The pension fund has two 
investment options: a risk-free investment and a risky investment. The risk-free investment is putting all 
money on a bank account paying a fixed interest rate. The alternative risky investment is an investment in the 
stock market. In each time period the pension fund has to decide which fraction of their money to put on the 
bank account and which fraction of the money to spend on buying stocks. In order to make an optimal 
investment decision the pension fund needs an accurate prediction of the price of stocks. As their financial 
advisor, you have to predict the stock market price during 52 subsequent time periods. Your earnings during 
the experiment depend upon your forecasting accuracy. The smaller your forecasting errors in each period, the 
higher your total earnings.” (Hommes et al., 2005).  
In negative feedback markets: “You are the adviser to a producer. The nature of the product that is being 
produced is not relevant in this experiment. At the start of each period you make a prediction of the price of 
the product in that period. The producer you are coupled with decides how much to produce, based upon your 
prediction of the price. Several producers are active in one market. Every producer is coupled with exactly one 
adviser (participant in this experiment) and every adviser with exactly one producer. The realized price is 
determined by the total production of all producers in a market and the total consumer demand (the realized 
price is such that total supply equals total demand).” (Sonnemans et al., 2004). 
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underlying price generating mechanism does not appear to have an effect on price forecasts 

and the resulting market dynamics, see Sonnemans and Tuinstra, 2010).3 

The essential feature of LtF experiments is that expectations feedback is taken into 

account: participants’ forecasts are based on previous market prices, and future values of 

these market prices in turn are partly determined, through trading decisions and market 

clearing, by participants’ forecasts, as explained above.4 Depending on the direction in 

which the realized price changes when the average price forecast increases, the expectation 

feedback can be characterized as positive or negative. In the next two sections we will 

discuss these two cases separately. 

For both cases we are interested in the individual prediction strategies that 

participants use (and how these strategies depend upon the characteristics of the market 

environment), and in the resulting market dynamics, that is, whether prices converge to 

their equilibrium values, or whether they exhibit mispricing, excess volatility or even 

bubbles and crashes. 

 

2.  Positive expectations feedback: Financial markets 

Under positive expectations feedback high average expectations (i.e. higher than the 

equilibrium price) will lead to a realized price that is also high (i.e. higher than the 

equilibrium price), while low average expectations will result in low prices. A prime example 

is provided by financial asset markets, where an investor who expects the price of a 

particular asset to increase in the future will want to invest more in this asset, while 

investors who expect the price to decrease might be eager to divest. If, on average, 

investors expect the price to increase in the future, aggregate demand for the asset will go 

up, and the market clearing price will increase instantaneously. This self-confirming nature 

of financial markets leads to a positive correlation between average expectations and the 

price and is related to the concept of strategic complements from game theory (see Bulow 

et al., 1985): if the other investors, on average, forecast a high (low) price, the realized price 

 
3 This approach to investigate expectations was introduced in Marimon et al. (1993). See Hommes (2011) for 
an overview of the early literature. 
4 Alternatively, expectation formation can be studied by letting participants predict the next value of an 
exogenously given time series (see Glaser et al., 2019, for a recent example). However, we are specifically 
interested in expectations in an environment with expectations feedback, where prices are endogenous and 
depend upon price forecasts, since this is relevant for many economic applications. 
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will be high (low) as well and the best response is then to predict in line with the other 

investors. This positive expectations feedback also characterizes financial market LtF 

experiments. 5 

Because current demand for an asset is based upon the expected return of investing 

in that asset and therefore also depends upon its future market price, in most of these 

financial market LtF experiments participants have to predict the market price two periods 

ahead. That is, because the market clearing price in period t, say 𝑝!  , is determined by 

demand for the asset in that period, which depends upon the price expected, by all 

participants in the market, for period t+1, the market clearing price 𝑝! is not available yet 

when participants have to predict 𝑝!"#. Therefore, participants have to base their 

predictions for period t+1 on prices up until period t-1. 

Now let us briefly consider, as an example, the positive feedback LtF experiment 

from Hommes et al. (2008). The price generating mechanism (which is based upon investors 

that are myopic mean-variance maximizers, fixed exogenous supply of the asset, and market 

clearing) in that experiment is given by 

𝑝! =
#
#"$

[�̅�!"#% + 𝑦']                                                          (1) 

Here 𝑟 is the interest rate and 𝑦' is the mean dividend paid out by the asset. Moreover, �̅�!"#% =
#
&
∑ 𝑝',!"#%&
')#  is the average price prediction for period t+1, where the average is taken over 

the six participants that are active in a market (see Hommes et al., 2008, for a derivation of 

this market clearing price and further details).  For this experiment the interest rate and mean 

dividend are set at 𝑟=0.05 and 𝑦' = 3, respectively, which results in a fundamental value of 60 

(that is, if the average expectation equals 60, then the market clearing price will also be equal 

to 60). Participants to the experiment know the interest rate and the mean dividend but are 

not given Equation (1). They also do not observe the predictions of other participants. Their 

payment for each of the 50 periods for which they have to form a prediction is based upon 

their quadratic forecast error.  

 
5 Another game that is characterized by strategic complementarities and that is closely related to positive 
feedback LtF experiments is the number guessing game (or beauty contest game), see Nagel (1995). Hanaki et 
al. (2019) show that the strategic environment (whether actions are strategic complements or strategic 
substitutes) has a significant effect on the deviations from the Nash equilibrium in a laboratory experiment 
with the number guessing game when groups contain at least 5 participants (the minimal group size of the 
experiments we discuss in this chapter is 6). See Sonnemans and Tuinstra (2010) for a further discussion of the 
differences between the number guessing game (with strategic complements) and positive feedback LtF 
experiments. 
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Figure 1: Example of prices and predictions in a positive feedback market (see Figures 3 and 
7 (market 2) in Hommes et al., 2008). The horizontal axis displays the periods. The prices 
(left panel) go through two large bubbles. The predictions of the six participants (right 
panel) exhibit a high degree of coordination. The fundamental price in this market is 60 and 
price predictions are capped at 1000.  
 

In Hommes et al. (2008) five of the six markets show large bubbles in asset prices, 

and in none of these markets does the price converge to its fundamental value. Figure 1 

shows the realized prices and the individual price predictions in market 2 from that 

experiment. Note that prices increase to a level that is sixteen times as high as the 

fundamental value of 60. The high level of coordination of price predictions that can be seen 

in the right-hand side of Figure 1 is remarkable, in particular because participants cannot 

see each other’s predictions. This coordination is a consequence of the strategic 

complementarity of predictions in positive feedback LtF experiments. Moreover, 

participants tend to coordinate on strategies that extrapolate past trends in prices. In 

particular, simple trend-extrapolating prediction strategies of the form 𝑝',!"#% = 𝑝!*# +

𝛳(𝑝!*# − 𝑝!*+) are often encountered in positive feedback LtF experiments, where typically 

𝛳 is somewhere between 0.7 and 1.0.6 Such strategies lead to self-confirming increases in 

asset prices and explain the bubbles and crashes that emerge in these positive feedback LtF 

experiments. Both features, large bubbles in asset prices and strong coordination of 

predictions, are quite robust. They can, for example, also be observed when fundamental 

robot traders are added to the market (see Hommes et al., 2005), or when the number of 

 
6 For example, for 42 of the 84 participants in the experiment presented in Hommes et al. (2005), individual 
predictions could be fitted by a rule of the type  𝑝!,#$%& = 𝛼 + 𝛽𝑝#'% + 𝛳(𝑝#'% − 𝑝#'(), where the 25th 
percentile of the estimated 𝛳 values is equal to 0.68 and the 75th percentile is equal to 1.05 (with the lowest 
(highest) estimate of 𝛳 equal to 0.41 (1.60) and the average estimate equal to 0.88).  
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participants in each market is (much) larger than six (see Bao et al., 2020 and Hommes et al., 

2021), and they do not disappear with experience (see Kopányi-Peuker and Weber, 2021). 

For a general and up-to-date overview of LtF experiments with positive expectations 

feedback we refer to the recent article by Bao et al. (2021).  

 

3. Negative expectations feedback: Production markets 

In production markets, in particular when the production process is time consuming (such as 

is the case, for example, for many agricultural products) firms have to decide their 

production level long before they can actually supply their product to the market. Their 

decisions are therefore based upon the price they expect to get when their product is ready 

to be sold. Such markets are typically characterized by negative expectations feedback: If 

firms on average expect a price that is higher (lower) than the equilibrium price, their supply 

will be high (low), and the market price – that is, the price for which aggregate supply equals 

(the exogenously given) consumer demand – will then be lower (higher) than the 

equilibrium price. In such markets predictions are strategic substitutes: If other participants 

on average predict a high price, the best response for a participant is to predict a low price, 

and vice versa.  

In negative expectations feedback LtF experiments participants typically predict only 

one period ahead, where this period is interpreted as the time between the production 

decision and selling the product.7 A classic example is the hog cycle (Tinbergen, 1930) where 

farmers decide how many pigs to raise, and one period corresponds to the time needed to 

fatten a pig. If farmers would use a naïve prediction strategy, that is, if they expect next 

period’s price to be equal to the current price, prices will oscillate around their equilibrium 

values, with these oscillations eventually converging to the equilibrium price, diverging away 

from it, or remaining constant, depending on the slope of the supply curve relative to the 

slope of the demand curve.  

When predictions are strategic substitutes, it pays off for participants to disagree 

with the majority of the other participants, which inhibits coordination of predictions. 

Indeed, where predictions in positive feedback LtF experiments tend to be strongly 

correlated, forecasts in the first couple of periods in negative feedback LtF experiments are 

 
7 Exceptions are models where investments decisions have to be made that last for more years, like planting a 
multi-year crop or building a power station (see for example Arango and Moxnes, 2012). 
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typically scattered around the equilibrium price, with some predictions above and some 

below that equilibrium price. There will therefore be a tendency for the average forecast to 

be close to the equilibrium price and prices often converge to that equilibrium price quickly. 

In fact, persistent fluctuations or bubbles and crashes rarely occur in negative feedback LtF 

experiments (see, for example, Hommes et al., 2007, Heemeijer et al., 2009, and Bao et al., 

2013).   

Let us now consider an example of such a negative expectations feedback market in 

a bit more detail. Suppose there are K firms active in the market for a certain commodity, 

and each firm needs one period to produce that commodity. The decision on how much to 

supply to the market in period t will depend upon the firm’s expected price for that period, 

denoted by 𝑝,,!%  for firm 𝑘. These expectations are formed at the end of period t-1, after the 

firm has observed the market clearing price for that period, 𝑝!*#. For a given cost function 

(assumed to be the same for each firm in the market) the firm optimally sets its quantity 

such that marginal costs are equal to the expected price, resulting in individual supply 

𝑆1𝑝,,!% 2 for firm 𝑘. 

Aggregate supply meets a consumer demand that is assumed to linearly decrease 

with the price 𝑝!:  

 

𝐷(𝑝!) = 𝑎 − 𝑏𝑝! + 𝜇!,     (2) 

 

where 𝑎, 𝑏 > 0 are strictly positive demand parameters, and 𝜇! is a normally and 

independently distributed random series of small periodic demand shocks, with mean zero. 

The market clearing price in period t can now be found as  

𝑝! =	
𝑎 − ∑ 𝑆1𝑝,,!% 2-

,)#

𝑏 + 𝜀! 

where 𝜀! = 𝜇!/𝑏 is a noise term. 

In Heemeijer et al. (2009) the supply function is assumed to be linear as well, which 

gives rise to the following pricing equation  

𝑝! =
20
21
(123 −	 �̅�!%) + 𝜀! ,	 
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with 𝜀!~𝑁(0,1/4), and where �̅�!%  is the average price forecast for period t, with the average 

taken over the six participants that are active in the same market. 8 Note that the 

fundamental value is equal to 60: if all participants predict a price of 60, the market clearing 

price will be 60 in expectation. 

 

    
 
Figure 2: Example of prices (left panel) and individual predictions of the six participants 
(right panel) in a negative feedback LtF experiment (market 1 from Heemeijer et al., 2009). 
The horizontal axis displays the periods. 
 

Figure 2 shows a typical experimental result (market 1 from Heemeijer et al., 2009). 

In the first couple of periods predictions go through an initial phase of high volatility, after 

which they neatly converge to the equilibrium price, only to be disturbed occasionally by the 

impact of a mistake by one of the participants. The same behavior is observed in the other 

five negative feedback markets in Heemeijer et al. (2009). Moreover, if the supply curve is 

steeper than the demand curve, and the hog cycle model would predict large fluctuations, 

prices will still be relatively close to their equilibrium value (see Hommes et al., 2007). 

Individual prediction strategies can often be classified as naive (the prediction is equal to the 

last observed price,  that is, 𝑝,,!% = 𝑝!*#, for firm 𝑘), or adaptive (the prediction is adapted in 

the direction of the last observed price, that is 𝑝,,!% = 	𝑤	𝑝!*# + (1 − 𝑤)	𝑝,,!*#% , with 𝑤 ∈

(0,1) the updating parameter), see Heemeijer et al. (2009). Note, however, that due to the 

high level of convergence in negative feedback markets, individual prediction strategies are 

more difficult to uncover than in positive feedback markets. As soon as the market has 

converged to the rational expectations equilibrium, many different prediction strategies 

 
8 One would get this price generating mechanism by setting, for example,	𝑎 = 123, 𝑏 = 21/20 and a cost 
function for production equal to 𝑐(𝑞) = 3𝑞( (leading to an individual supply curve of 𝑆5𝑝),#& 6 =

%
*
𝑝),#& ). 
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(e.g. naive, adaptive or trend-extrapolating expectations) all correctly predict the 

equilibrium price. In the strategy experiment discussed in Sonnemans et al. (2004) 

prediction strategies are measured directly, that is, participants formulate algorithms that 

predict prices in simulations where they play against the algorithms of the other 

participants. Most strategies are quite complicated, but typically (weighted) average 

previous prices or adaptive strategies are also used there.9  

 

 
4. Connecting production and financial markets 

The dichotomy between positive and negative expectations feedback presented above is 

not so clear cut for actual markets. Some markets may have elements of both positive and 

negative expectations feedback, in particular when different types of market participants 

are active on this market. It might also be the case that a positive feedback financial market 

is connected to a negative feedback production market. For example, consider a spot 

market for a particular commodity, and a financial market where speculators trade in 

futures on the commodity that is sold in the spot market. An important question then is 

what the effect is of connecting the positive feedback futures market and the negative 

feedback spot market on the dynamics of spot market prices. Existing empirical evidence on 

the impact of futures markets on the stability of spot markets is mixed. On one hand, there 

is some evidence that the introduction of a futures market decreases volatility in the spot 

market (Working, 1960; Gray, 1963; Powers, 1970; Netz, 1995), but it should be noted that 

these new futures markets are relatively small at the start. On the other hand, Roll (1984) 

finds that that the volatility in the prices of orange juice futures is much larger than can be 

explained by changes in the weather and other factors that influence supply and demand. 

We investigate the effect a futures market has on the associated spot market by 

developing a simple model along the lines of Muth (1961) and Sarris (1984) and combine 

this with our knowledge of the prediction strategies that are typically used in positive and 

negative feedback LtF experiments. Our focus here will be on the intuition behind the 

model. The interested reader can find a formal treatment in de Jong et al. (2019). 

 
9 Note however that these algorithms may differ from the implicit strategies used in laboratory experiments 
because it may be difficult for some participants to formulate the heuristic they would use.  
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As in the models by Muth and Sarris (and many others) storage plays a central role in 

connecting the spot and futures markets. We therefore introduce inventory holders, next to 

the consumers and producers active on the spot market, and the speculators active on the 

futures market. Inventory holders act as arbitrageurs and trade on both markets. Of the four 

types of agents that we distinguish, only producers and speculators take decisions that 

depend upon their price expectations, in line with the negative and positive feedback 

markets described in Sections 2 and 3. 

The consumers’ decisions only depend on the current price in the spot market (and 

their price expectations therefore do not play a role). Aggregate demand by consumers of 

the commodity is represented by the linear demand function (2) that we discussed in 

Section 3, and that we repeat here for convenience: 

 

𝐷(𝑝!) = 𝑎 − 𝑏𝑝! + 𝜇!. 

 

Recall that 𝑎, 𝑏 > 0 are strictly positive demand parameters, and that 𝜇! is a normally and 

independently distributed random series of small demand shocks. We assume that 

consumers cannot store the commodity themselves in order to consume it in a later period. 

The role of the producers is also similar to the one they played in the negative 

feedback market discussed in Section 3. In particular, there are K producers, each having to 

decide one period in advance how much of the commodity they are going to supply to the 

spot market in period t. The optimal production decision will depend positively on the price 

the producer will get for its product in the next period. However, this price is not yet known 

at the time the production decision needs to be taken and therefore each producer chooses 

the quantity that, given his expectation of the spot market price in period t, 𝑝,,!
%,., maximizes 

his expected profit.  We depart from Heemeijer et al. (2009) by assuming that the marginal 

costs of production are a nonlinear function of the output level, and that this results in an 

upward sloping S-shaped individual supply curve, 𝑆/1𝑝,,!
%,.2, where 𝜆 > 0 is a parameter that 

captures the curvature of the supply function. Such a production function implies that 

individual production cannot increase without bound, which seems to be relevant for many 

industries. Moreover, it ensures that prices remain bounded when the equilibrium price is 

unstable. 
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Figure 3: The aggregate supply function, for different values of 𝜆, together with the linear 

demand function. 

 

Figure 3 depicts the demand function (when the demand shock, 𝜇!, is equal to zero) 

and the aggregate supply function for different values of the parameter 𝜆.10 Higher values of 

this parameter correspond to steeper supply curves, meaning that the price elasticity of 

supply is higher, and producers adjust their output more aggressively in response to a 

change in their expectations. When the value of 𝜆 passes a certain threshold, the price 

dynamics under naive expectations (and in the absence of a futures market) changes from 

oscillations converging to the equilibrium price, to convergence of prices to a stable two-

cycle. Note that if both supply and demand functions would have been linear, a stable two-

cycle generically does not exist under naive expectations. Instead, high values of 𝜆 would 

 
10 For this figure, and the simulations later in this section, we use the specification 𝑆+5𝑝),#

&,,6 =

𝑐 71 + tanh<𝜆5𝑝),#
&,, − 𝑑6?@ for the individual supply function, which is also used in the negative feedback LtF 

experiment discussed in Hommes et al. (2007). The results from that experiment are very much in line with 
those discussed in Section 3, where a linear supply function was employed. For Figure 3 (and for the 
simulations later in this section) we use 𝑎 = 12, 𝑏 = 𝑐 = 1, 𝐾 = 𝑑 = 6 and 𝜆 = 0.025,	𝜆 = 0.1 and 𝜆 = 0.25, 
respectively. Note that, as long as 𝑎 − 𝑏𝑑 = 𝐾𝑐, the rational expectations equilibrium is given by 𝑝∗ = 𝑑 = 6, 
which will be stable under naïve expectations for 𝜆 < 𝑏/(𝐾𝑐) = 1/6. At 𝜆 = 1/6 a stable two-cycle is created, 
with prices perpetually moving between two values 𝑝% and 𝑝(, where 𝑝% < 𝑝∗ < 𝑝( and firms predicting 𝑝% 
when the price will be 𝑝( and the other way around. 
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give rise to diverging oscillations that grow without bound (until hitting a non-negativity 

constraint on price or quantity). 

On the futures market speculators predict the spot market price two periods ahead. 

Like the investors in the positive feedback LtF experiment discussed in Section 2, they are 

mean-variance maximizers of their next-period wealth. Therefore, they are willing to take a 

larger position in the futures market in period t when the futures market price 𝑝!"#
0  (that is, 

the price they receive in period t for the contract to deliver one unit of the commodity in 

period t+1) is further away from their spot market price prediction for period t+1. Their 

position in the futures markets will also depend on their risk attitude (represented by 𝜑, the 

coefficient of absolute risk aversion) and on their beliefs about the variance of spot market 

prices, σ2 (which we assume to be constant). Aggregate demand of the H speculators can be 

shown to be equal to: 11 

𝑧! =	
𝐻
𝜑𝜎+ 1�̅�!"#

%,1 − 𝑝!"#
0 2, 

where	𝑝J!"#
%,1 = #

2
∑ 𝑝',!"#

%,12
')#  is the average expectation of the speculators about the spot 

market price in period t+1 (recall that speculators have not yet observed 𝑝! when forming 

their prediction for the price in period t+1). If the futures market is isolated from the spot 

market we have 𝑧! = 0, as the speculators can only trade with each other in that case. 

When storage is possible, speculators can also trade with inventory holders. 

The storage part of the model is based upon Sarris (1984). There exists an optimal 

level of inventories for the inventory holders, and deviations from that optimum are costly 

(higher interest and storage costs for a positive deviation, and a reduction in convenience 

yield for a negative deviation). We assume these deviation costs are quadratic. Let 𝐼! be the 

deviation of the (representative) inventory holder from his optimal level of inventories. If 

the current price in the spot market differs from the price on the futures market, the 

inventory holder can make a risk-free profit that equals 

𝜋! =	1𝑝!"#
0 −	𝑝!2𝐼! −	

1
2 𝛾𝐼!

+, 

where 𝛾 > 0 is a cost parameter. The inventory holder profit from arbitrage is maximized 

when the inventory deviation 𝐼! equals 

 
11 The derivation of this demand function is similar to that of the demand by the investors in the model 
discussed in Section 2 (the derivation of which can be found in Hommes et al., 2008). 



 13 

𝐼! =
𝑝!"#
0 −	𝑝!
𝛾 . 

Note that 𝐼! can be either positive or negative. When the futures price is higher (lower) than 

the spot market price, the inventory is increased (decreased) and futures are sold (bought). 

The speculators will take the other side of the market. This means that the influence of the 

speculators on the spot market price runs through the storage of the commodity: if the 

speculators predict a high future spot market price they demand more futures, which are 

supplied by the inventory holders. If the inventory holders supply more futures, they 

demand more of the commodity in the current period and change their inventory 

accordingly. 

Imposing market clearing on the futures market allows one to solve for the futures 

market price 𝑝!"#
0 , which reveals that the inventory deviation 𝐼! will be a linear function of 

the difference between the average price prediction of the speculators and the current spot 

market price: 

																																										𝐼! = 𝐴(�̅�!"#
%,1 −	𝑝!),	 with  𝐴 = P#

2
𝜑𝜎+ + 𝛾Q

*#
	. 

The composite coupling parameter A measures the strength of the connection between the 

futures market and the spot market. It depends negatively on the costs and possibilities of 

storage through the cost parameter 𝛾. If deviations in the optimal inventory level are very 

costly, the futures market will have a limited effect on the spot market, but if it is easy and 

cheap to deviate from that level, the connection between the two markets will be much 

stronger. The coupling parameter A also increases with the size of the futures market (that 

is, the number of speculators H), and decreases with the level of risk aversion of the 

speculators, 𝜑, and the expected volatility of spot market prices,	𝜎+. For goods that cannot 

be stored, 𝛾 will be infinite, meaning that A = 0 and the two markets are effectively 

disconnected. By contrast, A ® ¥ means that spot market prices are completely determined 

in the futures market. 

The spot market price is determined by equilibrium between aggregate supply of the 

producers of the commodity and aggregate demand. Here aggregate demand consists of 

final consumer demand (represented by 𝐷(𝑝!)), plus the (positive or negative) change in the 

inventories of the inventory holders: 
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R𝑆/1𝑝,,!
%,.2

-

,)#

	= 	𝐷(𝑝!) +	𝐼!(�̅�!"#
%,1 , 𝑝!) 	−	𝐼!*#(�̅�!

%,1, 𝑝!*#). 

The price that clears the spot market can now be derived as: 

𝑝! =
𝑎 − ∑ 𝑆/1𝑝,,!

%,.2 + 𝐴�̅�!"#
%,1 − 𝐼!*#(�̅�!

%,1, 𝑝!*#)-
,)#

𝐴 + 𝑏 +
𝜇!

𝐴 + 𝑏	.																																												(3) 

In Equation (3) the demand parameters a, b and the demand shocks 𝜇! come from the 

consumer demand function (2) and 𝑆/1𝑝,,!
%,.2 is the individual supply of producer k in period 

t, given that he predicts price 𝑝,,!
%,. for that period. The final part in the numerator consists of 

the direct effect of the futures market on the spot market price, 𝐴�̅�!"#
%,1 , which depends upon 

the average expected price of the speculators for the spot market price in period t+1, �̅�!"#
%,1 , 

and the indirect effect, which comes via last period’s inventory 𝐼!*#(�̅�!
%,1, 𝑝!*#). Note that, 

the more the inventory holders stored of the commodity in the previous period, the less 

they need to buy from the producers on the spot market to satisfy their current demand for 

the commodity. Also observe that the pricing equation has elements of both negative 

expectations feedback (through the producers’ expectations for period t) and positive 

expectations feedback (through the speculators’ expectations for period t+1). 

We are interested in the effect that the level of connectedness between the futures 

market and the spot market, represented by the coupling parameter A and measuring the 

strength of positive feedback versus that of negative feedback in the model, has on stability 

of spot market prices. One effect of the coupling parameter A can be seen in the last part of 

the pricing equation: A larger value of A mitigates the effect of the demand shocks 𝜇! on the 

spot market price. However, when the price expectations of the speculators in the futures 

market are more volatile, this will also increase the volatility in the spot market through 

𝐴�̅�!"#
%,1 . 

In general, the dynamics in spot market prices is governed by the strength of the 

connection between the markets, A, the steepness of the supply function, represented by 

the parameter λ, and the prediction strategies of the producers and the speculators. Under 

rational expectations of all traders, only the exogenous demand shocks would cause some 

variation in the prices. In that case an increase in the connection strength would decrease 

price volatility since it dampens the effect of the demand shocks. However, from the LtF 

experiments with positive and negative feedback markets that we discussed in Sections 2 
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and 3, we know that prediction strategies of human subjects are typically at odds with 

rational expectations. In order to obtain a good understanding of the type of dynamics that 

we may encounter in our model we run simulations in which producers use naive or 

adaptive expectations (as human subjects tend to do in negative feedback LtF experiments) 

and where speculators are endowed with trend-extrapolating expectations (as almost 

invariably used by human subjects in positive feedback experiments) 

More specifically, for our simulations we use markets with K=6 producers (with S-

shaped supply functions, see footnote 10) and H=6 speculators, and set the demand and 

supply parameters as 𝑎 = 12, 𝑏 = 1 , 𝑐 = 1, and	𝑑 = 6. The spot market equilibrium price 

(in absence of demand shocks) then equals 𝑝∗ = 6, and for the demand shocks we assume 

𝜇!~𝑁(0,0.01). For the first set of simulations we assume naive expectations for the 

producers (that is, 𝑝,,!
%,. = 𝑝!*# for all 𝑘) and the following specification of trend-

extrapolating expectations for the speculators: �̅�!"#
%,1 = 𝑝!*# + 0.8(𝑝!*# − 𝑝!*+). We run 

each simulation for 10,000 periods, and between simulations we vary the values of the 

coupling parameter A and the parameter that regulates the steepness of the supply 

function, 𝜆. For each simulation we then determine the relative volatility of the spot market 

prices, as measured by ρ, which is the variance of spot market prices, divided by the 

variance of the demand shocks. 

 

Figure 4: Simulations with producers with naive expectations and speculators with trend-
extrapolating expectations, for different values of A and 𝜆.  

 



 16 

 

Figure 5: Simulations with producers with adaptive expectations and speculators with trend-
extrapolating expectations for different values of A and 𝜆. 

 

Figure 4 shows the results of the simulations, with the coupling parameter A on the 

horizontal axis and the volatility measure ρ on the vertical axis.  It follows that, for 𝐴 

relatively small, an increase in the coupling strength A leads to a decrease in volatility in 

spot market prices. However, when the coupling strength is increased further price volatility 

eventually increases again – suggesting a nonmonotonic effect of the coupling strength on 

market stability. For Figure 5 we change the expectations of the producers from naive to 

adaptive. In particular, we assume that each producer 𝑘 forms expectations according to 

𝑝,,!
%,. = 	0.65	𝑝!*# + 0.35	𝑝,,!*#

%,. .12 Again, we observe a U-shape in the relationship between 

the coupling strength A and price volatility ρ: The spot market first becomes more stable if 

the coupling strength between the spot market and the futures market increases, but if that 

coupling strength increases even more, the spot market is destabilized. Note that the 

nonmonotonic shape is consistent with the mixed empirical evidence that we discussed 

above. That is, starting with a small futures market (represented by a small value of H and 

consequently a small value of the coupling parameter A) an increase in the futures market 

initially reduces volatility in spot market prices, but if the futures market becomes too large 

 
12 For this specification we follow Anufriev and Hommes (2012), who use an adaptive expectations rule with a 
weight equal to 𝑤 = 0.65 as one of the heuristics in their heuristic switching model. This particular adaptive 
expectations rule is one of the rules used by participants in the LtF experiment described in Hommes et al. 
(2005), and the heuristic switching model developed in Anufriev and Hommes (2012) and using that rule is 
able to explain all of the data from that experiment quite well.  
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volatility increases again. In our model, informed by the outcomes of positive and negative 

feedback LtF experiments, this increase in volatility is created by the trend-extrapolating 

expectations used by the speculators that are active on the futures market.  

A recent LtF experiment that also combines positive and negative expectations 

feedback is Bao and Hommes (2019). However, the model underlying their design is quite 

different from our model. The price generating mechanism that they use is essentially 

equivalent with our Equation (1) from above, but with a feedback strength (which is equal 

to 1 (1 + 𝑟)X = 0.95 in the experiment that we discussed in Section 2) that depends on the 

weight of the suppliers, relative to that of the speculators. Bao and Hommes (2019) run 

three treatments characterized by different values of this feedback strength, in particular 

they consider 0.95 (as in Hommes et al., 2008), 0.86 and 0.71, respectively. For the first 

treatment they find large fluctuations in realized market prices, which is consistent with the 

results from Hommes et al. (2008). For the second treatment there are still substantial, but 

smaller, fluctuations in market prices, and for the third treatment market prices typically 

converge to their fundamental value quickly. Feedback strength therefore plays an 

important role in the price dynamics. 13  Also note that in the model used in Bao and 

Hommes (2019) the feedback strength is equal to the slope of the price generating 

mechanism under naïve expectations. 

In contrast to Bao and Hommes (2019), the predictions of suppliers and speculators in our 

model are not directly aggregated into one aggregate prediction, but play different roles. 

This implies that, even in the simple case of naïve expectations for both speculators and 

suppliers, our model gives rise to a two-dimensional dynamical system, where the realized 

market price in period 𝑡, 𝑝!, will depend upon both 𝑝!*# and 𝑝!*+. For small values of A this 

system's eigenvalues are real and negative (as in the cobweb model) 14. As A increases, the 

most negative of the two eigenvalues first moves closer to 0, eventually resulting in stable 

 
13The relationship between feedback strength and price dynamics was also established in Sonnemans and 
Tuinstra (2010). Two recent LtF experiments, Bao and Zong (2019) and Hennequin and Hommes (2019), use 
this relationship to study whether monetary policy rules may help in deflating bubbles in asset prices. These 
studies start from Equation (1) in Section 2, but let the interest rate r vary over time. In particular, they assume 
that the monetary policy rule is such that, when the deviation of the market price from its fundamental value 
becomes too large, the interest rate increases (or decreases, if the deviation is negative). Both studies find that 
monetary policy rules of this type are quite effective in stabilizing market prices.  
14 For example, when 𝐴 = 0 the eigenvalues are 0 and -0.15, -0.6, and -1.5  for 𝜆 = 0.025, 𝜆 = 0.1	and	𝜆 =
0.25, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦.	 
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dynamics under naive expectations. When A is increased further the eigenvalues become 

complex with absolute values that increase with A. So, unlike the situation in Bao and 

Hommes (2019), these eigenvalues are never real and positive in our model. 

 
 

5. Conclusion 

In this chapter we first reviewed the results of Learning to Forecast experiments with either 

positive expectations feedback or negative expectations feedback. Subsequently, we 

discussed how the results from these experiments may inform us about the behavior of 

more complex markets. In particular, we considered a spot market with an associated 

futures market, leading to a market environment that has elements of both negative 

feedback (from the expectations of the firms that produce the physical commodity traded 

on the spot market) and positive feedback (from the expectations of the speculators that 

are active in the futures market). An important factor is the connection strength (as 

represented by the coupling parameter A), which depends on the size of the futures market 

(relative to the spot market) and the cost of storage, and which measures the effect that the 

futures market has on the spot market. We run simulations, with prediction strategies 

typically encountered in existing positive and negative feedback LtF experiments as an 

input, and find that, depending on the price sensitivity of the producers’ aggregate supply 

curve, and the strength of the connection between the two markets, connecting the futures 

market to the spot market will be stabilizing (if the connection is relatively weak) or 

destabilizing (when the connection is strong, and the price sensitivity of supply is relatively 

high). 

A caveat is in order here. We cannot be sure that participants in these connected 

markets will use precisely the same type of prediction strategies we see in unconnected 

markets. For example, it could be that when the spot market is less stable than a stand-

alone negative feedback market, producers will use different prediction rules, for example 

the type of expectations that are typically seen in positive feedback markets. The best way 

to find out whether our predictions will turn out to be correct, is by running a laboratory LtF 

experiment with connected markets.  Such an experiment is inevitably more complex than 

one with a single market as it requires participants for at least two different roles: one as 

advisor to producers and one as advisor to speculators. Both roles require participants to 
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forecast spot prices, but advice to producers requires one-period-ahead forecasts while 

two-periods-ahead forecasts are needed for speculators. A first set of results of an 

experiment like this can be found in de Jong et al. (2019). 

Obviously, instead of studying the effect of futures markets on price behavior in an 

LtF experiment, this effect can also be studied in a laboratory experiment where 

participants can trade in the relevant commodities themselves (which is sometimes referred 

to as Learning to Optimize experiments). Indeed, Porter and Smith (1995) and Noussair and 

Tucker (2006), for example, introduce futures markets in the well-known asset market 

experiment by Smith et al. (1988). Whereas bubbles and crashes in the asset price are 

typical in that original experiment (and have been replicated many times), introducing 

futures markets tends to significantly reduce or even eliminate these bubbles.15 There are 

some important differences with respect to the experiment that we suggest (apart from the 

possibility to trade in the commodity). First, the underlying commodity in these Learning to 

Optimize experiments is a financial asset as well, meaning that – as opposed to our setting – 

both the spot and the futures market are characterized by positive expectations feedback 

and are conducive to speculation. Moreover, because in our design the commodity needs to 

be stored we can vary the strength of the connection between the two markets. Finally, in 

Porter and Smith (1995) and Noussair and Tucker (2006) all participants trade on both 

markets, whereas in our design participants are active either on the spot market or on the 

futures market. The stabilizing effect in these earlier experiments seems to be due to the 

fact that participating in the futures markets helps the participants to form better 

predictions about the spot market price, whereas storage plays a more important role in our 

experimental design. 

There is a tradeoff in designing financial experiments. On one hand, experiments are 

necessarily limited in complexity and duration. The decision situation should be simple 

enough for participants to understand after a short instruction and preferably they will also 

have opportunities for learning during the experiment. On the other hand, the dynamics of 

interacting markets can be quite complex. The challenge of the designer is to simplify the 

task of the decision maker while keeping the most interesting aspects of the situation. In LtF 

 
15 In the experiment of Porter and Smith (1995) there is only one futures market (for one period, midway 
through the asset’s maturity) which is sufficient to reduce bubbles, whereas in the experiment of Noussair and 
Tucker (2006) there is a futures market for each period, which has a much stronger effect on stabilizing prices. 
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markets participants only make predictions and don’t have to worry about trading and the 

predictions are incentivized in a clear way. This leaves room for studying more complex 

situations, like described in this chapter. The designer of experiments has to make many 

decisions: do participants predict prices in only one market or in more markets 

simultaneously, which roles are played by participants and which by computerized players, 

what information is available to the participants and in what format, and what is the exact 

incentive structure? We conclude with the observation that there is a lot to learn from LtF 

experiments, and that much work is waiting for eager financial experimentalists! 
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