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Abstract

The popularity of open ascending auctions is often attributed to the fact

that openly observable bidding allows to aggregate dispersed information.

Another reason behind the frequent utilization of open auction formats may

be that they activate revenue enhancing biases. In an experiment, we com-

pare three auctions that differ in how much information is revealed and

in the potential activation of behavioral biases: (i) the ascending Vickrey

auction, a closed format; and two open formats, (ii) the Japanese-English

auction and (iii) the Oral Outcry auction. Even though bidders react to

information conveyed in others’ bids, information aggregation fails in both

open formats. In contrast, the Oral Outcry raises higher revenue than the

other two formats by stimulating bidders to submit unprofitable jump bids

and triggering a quasi-endowment effect.
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1 Introduction

Open ascending auctions are routinely preferred to sealed-bid formats by both

private platforms (e.g., Amazon, eBay, Catawiki) and policy makers, for example

in the allocation of spectrum rights (Milgrom, 1989; McMillan, 1994; Milgrom,

2004). One compelling theoretical reason for their popularity is that open ascend-

ing auctions allow bidders to endogenously aggregate dispersed information due to

the observability of the bids. Standard theory predicts information aggregation to

have two advantages: it allows for a more precise estimate of the value and it leads

to higher revenues in expectations. In single-unit auctions with affiliated values,

buyers who are better informed bid more aggressively (Milgrom and Weber, 1982).

This is implied by the linkage principle, according to which average revenues are

increased by providing bidders with more information about the value of the item

for sale. To this date, the linkage principle remains highly influential and is often

cited as the reason why open auctions are and should be preferred over sealed-bid

formats.1

Empirically, however, it remains an open question whether open ascending

auctions are indeed capable of aggregating information. One challenge is that

the single-unit setup with affiliated values hosts multiple equilibria (Bikhchandani

et al., 2002). This multiplicity may impede information aggregation (Milgrom,

2004, p. 197). Another challenge is that some open ascending auctions allow

for jump bidding, which may obfuscate information (Avery, 1998; Ettinger and

Michelucci, 2016). Also, in every-day auctions, particularly those involving non-

professional bidders, the reasoning required to infer information from the bidding

of others may be too demanding.

Aside from their potential for information aggregation, open ascending auctions

may also differ from closed formats in the extent to which they activate or mitigate

behavioral biases. Some of these biases provide alternative mechanisms for raising

revenues. For instance, it is common for open ascending auctions to provisionally

1In a policy report on the question whether the spectrum auctions ran in the UK in 2018
should use an open or sealed-bid design, PowerAuctions (2015, p. 6) writes: “. . . , an auction
should be structured in an open fashion that maximizes the information made available to each
participant at the time she places her bids (Paul R. Milgrom and Robert J. Weber, 1982a).
When there is a common value component to valuation and when bidders’ signals are affiliated,
an open ascending-bid format may induce participants to bid more aggressively (on average) than
in a sealed-bid format, since participants can infer greater information about their opponents’
signals at the time they place their final bids.” In a footnote they explain that the text is quoted
from Ausubel (2004), and add that “Its assessment is typical of the consensus of the auction
literature today.” The NERA (2017) report also favors an open ascending auction and echoes
the same view on page 11: “Auction theory tells us that price discovery can ease common-value
uncertainty, and encourage bidders to bid a higher proportion of value . . . ”.
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award the item during the auction to the bidder who submits the highest standing

bid. As a result, auction fever may be activated, which encourages overbidding

and leads to a quasi-endowment effect (Heyman et al., 2004; Ehrhart et al., 2015).

Another possibility is that open ascending auctions encourage näıve jump bid-

ding, for instance when bidders are impatient and want to terminate the auction

quickly. In contrast to when jump bidding is motivated by strategic reasons, näıve

jump bidding may easily enhance revenues.2 Open ascending auctions may also

encourage spiteful bidding because bidders can condition their overbidding on the

presence of other remaining active bidders (Andreoni et al., 2007; Bartling et al.,

2016). There is, however, also a possibility that open ascending auctions mitigate

behavioral biases. For example, the higher transparency of open formats may lead

to buyers becoming aware of the winner’s curse and tame the overbidding (Levin

et al., 1996). When the winner’s curse is mitigated, lower revenue may be the

result in an open ascending auction.

In this paper we explore whether open auctions do raise higher revenues than

sealed-bids formats. Moreover, we disentangle whether this is due to information

being successfully aggregated or other behavioral mechanisms.

eBay provides a natural setting to explore information aggregation and rev-

enues in open auctions. eBay uses an open ascending format which allows for

jump bidding and provisionally awards the good to the highest standing bidder.

Thus, both information aggregation and revenue-enhancing biases are possible in

this format. We collected eBay data for one of the most frequently auctioned

cellphones at the time of the study. The field-data analysis that we report in the

Appendix, Section A.1, offers suggestive evidence that information endogenously

generated during the auction (proxied by the price reached halfway through the

auction) and jump bidding (proxied by the average increment per bidder) corre-

late positively with final prices. On the basis of a median split, we find that above

median bidding in the first half of the auction corresponds to an increase of 67%

in the final price. Likewise, with a median split on the average increment per

bidder, we find above median increments between consecutive bids correspond to

an increase of 14% of the final price. The findings are consistent with information

aggregation and also with the presence of revenue-enhancing näıve jump bidding.

2Probably the most preposterous auction ever was decided by a näıve jump bid. After
murdering the Roman emperor Pertinax (A.D. 193), the praetorian guard offered the Roman
empire for sale in an ascending auction. Julianus topped Sulpicianus’ highest bid of 20,000
sesterces per soldier by a winning bid of 25,000 sesterces. The winning bid corresponded to 5
years of wage of each of the 10,000 praetorians. After Julianus defaulted on his bid, he was
murdered after a reign of only 66 days (Klemperer and Temin, 2001).
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However, such data has severe limitations. First, the direction of causality is un-

clear. Second, such data is lacking crucial insights about bidders’ information and

the value of the item for sale, which makes it impossible to separate behavioral

mechanisms from information aggregation. Third, we miss data from an appro-

priate control condition, i.e., a counterfactual auction which does not allow for

information aggregation.

To overcome these limitations, we employ a laboratory experiment where we

randomly assign subjects to three different auction formats. These differ in the

information revealed during the bidding process, and, possibly, also in the extent

to which different behavioral biases can be triggered. To ensure comparability, all

formats use a second-price rule.

The first auction format is the Japanese-English auction, an open ascending

auction with irrevocable exits. In this format, a clock tracks the ascending price

and bidders withdraw from the auction until a single bidder remains, who wins the

auction and pays the last exit price. The exit prices of other buyers are publicly

observed. These bids then allow to infer other bidders’ private signals, which are

informative about the common value.

The second auction format is the ascending Vickrey auction, a sealed-bid as-

cending auction. It is implemented identically to the Japanese-English auction

with an ascending clock and irrevocable exits. However, exits are not observable

by others, thereby eliminating the possibility of information aggregation.

The third format we run is the Oral Outcry auction, modeled to fit popular

auction designs. It falls between the other two in terms of its potential for infor-

mation aggregation. In this auction, bidders can control how much information is

revealed. They can engage in the informative, incremental bidding that charac-

terizes the Japanese-English auction. They can also engage in jump bidding, i.e.

out-bid the standing bid by a non-negligible amount. Jump bidding can be used

rationally, for instance to obfuscate information (Ettinger and Michelucci, 2016)

or to signal to other bidders that it is better to back off (Avery, 1998). Jump bid-

ding could also be used näıvely by impatient bidders. The Oral Outcry auction,

while still allowing for information aggregation, may also be the most conducive

to revenue-enhancing biases. This is the only format that allows bidders to submit

näıve jump bids, and it is also the only format that can activate auction fever by

provisionally awarding the good during the auction.

The comparison between the ascending Vickrey auction and the Japanese-

English auction provides a clean comparison of the role of information aggregation,

since these formats differ only in the public revelation of exits. Theoretically,
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rational bidders use the information revealed in the auction to form a more precise

estimate of the common value, which makes them less fearful of the winner’s curse

(Milgrom and Weber, 1982). As a result, the Japanese-English auction is expected

to raise higher revenue than the ascending Vickrey auction. Remarkably, this

prediction is reversed if bidders are näıve and tend to fall prey to the winner’s

curse. By gradually revealing the exit prices of bidders with low signals, the

Japanese-English auction could make the risk of suffering from the winner’s curse

more transparent, thus taming the overbidding and reducing revenues compared

to the ascending Vickrey auction. This intuition is captured by signal averaging

models, which we describe more precisely in Section 3.

When information is successfully aggregated, remaining bidders’ uncertainty

about the common value is reduced and prices approximate the underlying com-

mon value more closely (Wilson, 1977; Kremer, 2002). We evaluate information

aggregation by comparing the squared distance between the price and the common

value across formats.

We further decompose information aggregation into two components: (i) the

extent to which bids are objectively informative of the common value (information

revelation); and (ii) the extent to which bidders actually use this information

effectively in their own bidding (information processing).

We find that in the Japanese-English auction, less information than expected

is generated. One factor that contributes to this finding is that some bidders with

a low signal display spiteful behavior and stay in the auction longer than they

would in the ascending Vickrey auction. Such heterogeneity is not observable by

the remaining bidders and degrades the quality of the revealed information. In

addition, bidders are processing the available information sub-optimally. Even

though bidders are responding appropriately to the fact that early bids are re-

vealing little information by largely disregarding them, the potential to aggregate

the information actually available is mostly not realized. Instead, the processing

of information is qualitatively in agreement with signal averaging heuristics. This

combination of noisy early bids and sub-optimal information processing leads to a

failure of information aggregation. Although subjects have only access to their pri-

vate information in the ascending Vickrey auction, more information is aggregated:

the squared distance between prices and common value is lower in the ascending

Vickrey than in the Japanese-English auction, in which additional information is

available.

Surprisingly, bids in the Oral Outcry and Japanese-English auction reveal a

similar amount of information about the common value. That is, bidders do not
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make extensive use of the potential to strategically hide their information via

jump bidding. However, in the Oral Outcry auction, the available information is

processed to an even smaller extent than in the Japanese-English auction. Here,

final bids are substantially distorted by the quasi-endowment effect and rash jump

bidding. Subjects who are prone to endowment effects on a questionnaire measure

tend to stay too long in the auction and earn substantially lower payoffs. Addi-

tionally, this auction encourages many bidders to submit unfounded jump bids.

These forces result in systematic overbidding and a price which is the poorest

predictor of the common value across our auction formats.

The interplay of all aforementioned factors leads to similar revenues in the

Japanese-English auction and the ascending Vickrey auction. Highest revenues

are observed in the Oral Outcry auction. The rationale for why the Oral Outcry

auction is most often observed in the field may be quite different from the un-

derstanding in the theoretical and policy-oriented literature. Instead of leading to

information aggregation, it triggers behavioral biases such as the quasi-endowment

effect and reckless jump bidding.

In many ways, the laboratory provides the ideal environment to study how

information is generated and processed. An important question is whether ex-

perimental results generalize to the field. Our experiments use non-professional

bidders (students) that bid for objects with moderate values (of approximately

e 25). We think that this situation is representative for most online auctions in

the field. Beyond everyday auctions involving consumers, some of our results may

also extrapolate to some situations involving professional bidders. For instance,

Dyer et al. (1989) find that professional bidders in the construction industry fall

prey to the winner’s curse in the same way as students do. We do not claim that

our results generalize to spectrum auctions where bidders seek the advice of game

theorists.3

The remainder of the paper is organized in the following way. Section 2 reviews

the literature, Section 3 presents the game and some theoretical benchmarks,

Section 4 describes how information aggregation is evaluated. Section 5 presents

the experimental design and procedures. Section 6 discusses the experimental

results and Section 7 concludes.

3Nevertheless, it is interesting to note that also in those auctions bidders sometimes engage
in bidding that is merely motivated to drive up the price for a competitor. Such bidding may
be driven by a spiteful motivation, or by a predatory desire to weaken the competitor in a
future market (Levin and Skrzypacz, 2016). When bidding behavior may be driven by such
considerations, it becomes very hard to infer valuable information from competitors’ bids.
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2 Related literature

Previous laboratory studies have documented how people succumb to the winner’s

curse in common value auctions. For an overview, see Kagel and Levin (2014).

Eyster and Rabin (2005) and Crawford and Iriberri (2007) present behavioral

models to explain the winner’s curse. Recent studies have studied pathways behind

the winner’s curse, highlighting that problems with contingent reasoning (Charness

and Levin, 2009) and disentangling the importance of belief formation and non-

optimal best responses (Charness and Levin, 2009; Ivanov et al., 2010; Camerer

et al., 2016; Koch and Penczynski, 2018). We compare whether open auctions

mitigate or worsen the importance of behavioral biases such as the winner’s curse.

Levin et al. (2016) find that a Dutch auction lessens a winner’s curse compared

to sealed bid formats.

An important strand of literature investigates whether markets are capable

of aggregating dispersed information. A series of experiments have investigated

information aggregation in asset markets. Results have been mixed. Plott and

Sunder (1988) find that information aggregation only occurs when preferences

are homogeneous or when a complete set of contingent claims can be traded.

Forsythe and Lundholm (1990) find that information aggregation only succeeds

with trading experience and common knowledge of dividends. Hence, information

aggregation seems to fail when the inference task is complicated by the presence

of several dimensions of uncertainty, or when the information conveyed by prices

in equilibrium is less naturally interpretable.

How information is processed is also studied in the context of auctions, a

particularly important form of a market. Several papers study the effect of an

auctioneer exogenously revealing information in auctions. Kagel and Levin (1986)

and Kagel et al. (1995) show that there are ambiguous effects of revealing in-

formation in first-price and second-price sealed-bid auctions. In a setting with

both private and common value elements, Goeree and Offerman (2002) find that

high-quality reports of the auctioneer can positively affect efficiency and revenue,

but to a lower extent than predicted by theory.4 In contrast to this work, our

paper explores endogenous information aggregation. Aside from shedding light on

revenue effects, we uncover the process of how bidding generates information in

auctions, and how bidders process the available information.

Close to our work, Levin et al. (1996) compare the performance of the Japanese-

4Dufwenberg and Gneezy (2002) study another form of exogenous information disclosure.
They find that the disclosure of losing bids after first-price sealed-bid common value auctions
reduces revenue.
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English auction and the first-price auction in a common value setting. They find

that the revenue comparison of the Japanese-English auction and the first-price

auction depends on the experience of the bidders: with inexperienced bidders the

first-price auction raises more revenue. However, with experience this effect disap-

pears and is sometimes reversed. Changing the price-rule and the auction format

across treatments simultaneously complicates identifying the effect that informa-

tion aggregation has on the outcomes. As a result, their paper remains silent about

the extent to which the endogenous information revealed in the Japanese-English

auction allows bidders to actually aggregate information. On an individual bid-

der level, they cannot use the sealed-bid auction as a benchmark to measure the

degree of information processing in the Japanese-English auction. Their focus

is more on a revenue comparison of their two auction formats, instead of evalu-

ating the extent to which information is aggregated empirically. Shedding light

on this phenomenon is a key contribution of our paper. We also contribute by

showing that bidders process revealed information, as our design allows to com-

pare Japanese-English and second-price sealed-bid auctions that only differ in the

observability of information. Levin et al. (1996) only provide evidence that bids

correlate with previous dropouts in their Japanese-English auction, which may be

driven by mechanical correlation introduced by arranging bids into order statis-

tics (as we explain in Section 6.2). They do not, and due to the differences in

pricing rules cannot, provide evidence that bids do respond to revealed dropouts.

Another important difference is that their analysis does not include the Oral Out-

cry auction, which triggers the revenue enhancing biases that may explain their

actual popularity. A less important difference is that Levin et al. (1996) adopt

uniformly distributed values and signals, a knife-edge case where in equilibrium

rational bidders will only process the lowest dropout price and disregard all other

exit decisions in the Japanese-English auction.

A related literature compares different auction formats when bidders have in-

terdependent valuations. In such environments, the linkage principle does not

hold; with symmetric bidders, expected revenue and efficiency are predicted to be

the same across auction formats (Goeree and Offerman, 2003a). Some experimen-

tal papers introduce specific asymmetries that break the revenue and efficiency

equivalence results. For instance, Kirchkamp and Moldovanu (2004) compare ef-

ficiency between the Japanese-English and second-price sealed-bid auctions in a

particular setup with interdependent values, where a bidder’s value is the sum of

the own private signal and one specific signal of the other bidders. In that setup,

they find that the Japanese-English auction generates higher efficiency.
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Boone et al. (2009) and Choi et al. (2019) compare open and sealed-bid auctions

with interdependent values in the presence of insiders, to whom the value of the

item for sale is revealed. In line with their theoretical predictions, revenue and

efficiency increases in the Japanese-English auctions.5

In contrast to this work, our paper sheds light on how bidders process infor-

mation in the more common case where signals are affiliated. We investigate the

case in which the linkage principle applies and information revelation occurs with

symmetric bidders. As Perry and Reny (1999) note, “The linkage principle has

come to be considered one of the fundamental lessons provided by auction theory.”

Another distinction between our approach and this literature is that we study how

information is aggregated directly, instead of by relying on comparative statics ef-

fects which are predicted by information aggregation. We do so by employing

measures of information aggregation frequently used to theoretically evaluate in-

formation aggregation in auctions, see, for example, Wilson (1977), Pesendorfer

and Swinkels (2000) and Kremer (2002). Our results show that although revenue

is increased in some of our formats, this occurs while information aggregation

decreases, opposite to the theoretical prediction.

We also contribute to the literature on the Oral Outcry auction. Roth and

Ockenfels (2002) study the impact of different rules for ending internet auctions at

eBay and Amazon on bidders’ propensity for late bidding. Amazon’s rule to extend

bidding deadlines if new bids are submitted resembles our procedure. In the lab,

Ariely et al. (2005) find that Amazon’s rule to extend bidding deadlines generates

higher revenue than eBay’s in a private value setting. Cho et al. (2014) provide

field evidence and show that in the comparison of two open auction formats, an

open outcry English auction format raises more revenue, which they attribute to

endogenous information revelation. It can however not be excluded that the higher

revenue in the open outcry auction is actually due to behavioral factors. Close

to our experiment, Gonçalves and Hey (2011) compare a Japanese-English and

an Oral Outcry auction and find that they result in approximately equal revenue.

However, they focus on auctions with only two bidders, which means that the

5A different kind of interdependence is studied in the multi-unit auction experiments of Betz
et al. (2017). They consider the sale of multi-unit private values emission certificates of this
year (good A) and of next year (good B). Interdependence is created because units of type
A can be used as type B unit, but not vice-versa. Their treatment variables are the type
of auction and whether goods are auctioned sequentially or simultaneously. When items are
auctioned simultaneously, they find that open ascending auctions are more efficient than sealed-
bid auctions. Auctioning the items sequentially enhances the performance of sealed-bid auctions
but leaves the efficiency of ascending auctions unaffected. In each auction format, total revenues
are higher when items are sold sequentially.
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potential of the Japanese-English auction to generate endogenous information is

excluded by design.

It is also instructive to contrast what can be learned from our work compared

to a structural approach that uses field data. For instance, Haile and Tamer (2003)

use data from Oral Outcry auctions of timber-harvesting contracts held by the U.S.

Forest Service to infer information about bidders’ valuations. In a private values

model, they show what can be learned from two simple assumptions (i) bidders do

not bid above value, and (ii) bidders do not drop out unless the price is higher than

their value. Their approach allows the researchers to find bounds on the valuations

of bidders. Such information is useful, for instance to investigate whether reserve

prices are set optimally. In contrast, in our laboratory experiment, we observe

the common value and the signals. This allows us to investigate how information

is revealed, processed and aggregated in strategically more complicated common

value auctions, and how this depends on the auction format. More importantly,

where the structural approach takes rationality as a given, our approach makes it

possible to identify potential behavioral biases. In fact, we find that behavioral

biases are key to explain the popularity of Oral Outcry auctions vis-a-vis other

second-price formats.

Finally, we relate to the literature on endogenous information processing in

stylized games. Anderson and Holt (1997) initiated a literature on informational

cascades. Eyster et al. (2018) find that subjects’ social learning depends on the

complexity of the underlying problem. Magnani and Oprea (2017) investigate why

subjects violate no-trade theorems and find that over-weighting of one’s private

information contributes to such violations. Hossain and Okui (2018) study how

subject’s correlation neglect (Enke and Zimmermann, 2019) explains information

processing. Other studies show that biased inference can arise in in-transparent

problems where subjects display a lack of contingent reasoning (Esponda and

Vespa, 2014; Ngangoué and Weizsäcker, 2021; Mart́ınez-Marquina et al., 2019).

Our take-away from this literature is that subjects do pay attention to the behavior

of others, but that their sophistication depends on specifics of the problem, such

as the transparency of its presentation and its complexity. There is no single

result that generalizes across all contexts. In our view, this implies that social

learning should be studied in the particular setup of interest. How information is

processed and aggregated in the canonical affiliated values setup of Milgrom and

Weber (1982) is therefore still an open question. While this setup not only inspired

a vast body of theoretical work, it also was and continues to be very influential in

advice on actual auction design (McMillan (1994, p. 151-152), Cramton (1998)).
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3 Auction formats and theoretical benchmarks

In the following, we describe the auctions implemented in the laboratory, present

Nash equilibria as well as behavioral heuristics and explain revenue predictions.

3.1 General setup: Bidders and payoffs

All our formats are common value auctions with five bidders and a second-price

rule. The common value of the object for sale is unknown to bidders, who only

receive a private signal about the value. More precisely, the good has value V ,

where V � N (�; �V ) = N (100; 25). Each bidder i 2 f1; 2; : : : ; 5g receives a signal

Xi of the common value V . This signal is the sum of the underlying value and an

individual error �i:

Xi = V + �i

This error is i.i.d. across bidders and normally distributed with mean 0 and

standard deviation ��: �i � N (0; ��) = N (0; 35).

In all formats, the winner of the auction is the bidder who submits the highest

bid. This bidder receives a payoff equal to V minus the second highest bid. All

the other bidders receive a payoff of 0. For notational purposes, define a signal

realization xi for bidder i. Let Yi;(k) represent the k-th highest of the signals

received by any other bidder j 6= i, so e.g. Yi;(1) is the highest signal received by

any bidder other than bidder i.

3.2 Auction formats

We now provide details for each of the three auction formats we study.

The ascending Vickrey auction (AV)

We implement the ascending Vickrey auction (AV) with a clock procedure. After

bidders have been privately informed of their signals, the price rises simultaneously

from 0 for all participants. At any integer price 0; 1; 2; 3; : : : , bidders can decide to

leave the auction by pressing the “EXIT”-button. In the AV, no bidder observes

whether any other bidder has left. The auction stops as soon as four bidders have

exited the auction. The last remaining bidder wins the auction and pays the price

at which the fourth bidder leaves. In case multiple bidders leave last at the same

price, one of them is randomly selected to be the winner and pays the price at
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which she left. In this format, a bid is the price at which the bidder decided to

leave the auction.

The Japanese-English auction (JEA)

The Japanese-English auctions (JEA) makes use of the same clock procedure.

Differently from the AV, all remaining bidders are notified in real time of other

bidders’ exit prices. Like in the AV, the winning bidder is the last remaining

bidder after four bidders exit. This bidder pays the price at which the fourth

bidder left the auction.

The Oral Outcry auction (OO)

In the Oral Outcry auction (OO) bidders can outbid each other repeatedly and by

arbitrary amounts until no more out-bidding takes place and the good is awarded

to the highest standing bidder. In our implementation, bidding proceeds in bidding

rounds. In each bidding round, all bidders have 15 seconds to submit a maximum

bid. As soon as one bid is submitted, the bidding round is interrupted. At this

point, the bidder who submitted the highest bid becomes the standing bidder, the

provisional winner in case the auction would stop afterwards. The current price

is set to the second highest bid at this moment. A new bidding round starts, the

clock is reset to 15 seconds and the standing bidder is excluded from submitting

a new bid.6 During the auction, bidders are notified of the highest maximum bid

of each of the other bidders, with the exception of the current standing bidder,

about whom it is only revealed that her highest bid is at least as high as the

current price. The auction ends as soon as the countdown elapses without further

bidding. At this point, the last standing bidder wins the auction. She pays the

last current price, which is the second highest bid at the end of the auction.

3.3 Nash equilibrium predictions and behavioral forces

In this Section, we use game theoretic results, behavioral theories and recent exper-

imental findings to contextualize our research questions. We start with presenting

the Nash equilibrium predictions, according to which the JEA should aggregate

information and consequently lead to higher revenues than the AV.

6This leads to an auction ending time being determined endogenously. Such a rule is a feature
of online auctions at amazon.com, yahoo.com and catawiki.com.
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AV and JEA: Nash Equilibria and the Linkage Principle

Symmetric Nash equilibria in single-unit auctions with affiliated values have been

derived in Milgrom and Weber (1982). In the AV, a bidder’s strategy can be

described by a reservation price, which makes this format strategically equivalent

to the standard second-price sealed-bid auction (see Milgrom, 2004, p. 187-188).

A symmetric equilibrium of the AV is given by bids b(xi):

b(xi) = E
�
V jXi = xi; Yi;(1) = xi

�
That is, each bidder exits the auction as soon as the clock reaches the expected

value of the good for sale conditional on her signal and assuming that the highest

signal obtained by other bidders is also xi.
7

In the symmetric Nash equilibrium of JEA, bidders include endogenously re-

vealed information into their bidding strategies. The first bid is given by (see

Milgrom and Weber, 1982):

b1(xi) = E
�
V jXi = xi; Yi;(1) = xi; : : : ; Yi;(4) = xi

�
Just like in the AV, the first exit bid is obtained via a conditional expectation,

assuming that all other bidders hold an equally high signal. However, as soon as

the first bidder drops out at p1, the remaining bidders perfectly infer the signal

of the exiting bidder, from p1 = b1

�
Yi;(4)

�
. All bidders dropping out subsequently

base their j-th bid (for j > 1) on their private information and the signals inferred

from the j � 1 observed dropouts. The remaining bidders bid bj(xi):

bj(xi) = E
�
V jXi = xi; Yi;(1) = xi; : : : ; Yi;(5�j) = xi; p1 = b1

�
Yi;(4)

�
; : : :

: : : ; pj�1 = bj�1

�
Yi;(5�j+1)

� �
This equilibrium allows to iteratively back out all information except the one con-

tained in the highest signal.8 According to the linkage principle, the information

revealed in the JEA leads to more aggressive bidding, the fourth bid in the JEA

7In our experimental setup with 5 bidders and normally distributed values and signals, Go-
eree and Offerman (2003b) show that the above conditional expectation is equal to: b(xi) =

E
�
V jXi = xi; Yi;(1) = xi

�
= xi �

∫∞
−∞ ��V (xi��)�2

�(�)�
3
�(�) d�∫∞

−∞ �V (xi��)�2
�(�)�

3
�(�) d�

, where �V (�) denotes the pdf of the

common value distribution, ��(�) the pdf of the error distribution, with its cdf Φ�(�).
8We determine Nash equilibrium bids in our setup, using a result by DeGroot (2005, p. 167).

For inferred or assumed signal realizations by bidder i, define x̄i = 1
5

�P4
j=1 Yi;(j) + xi

�
. Then

in equilibrium each bidder i bids: E[V jxi; Yi;(1) : : : ; Yi;(4)] =

�

�2
V

+
5�xi
�2
�

1

�2
V

+ 5
�2
�

=
5�xi�

2
V +��2

�

5�2
V +�2

�
. On request,

we provide derivations showing that equilibrium bids can be inverted such that they depend
linearly on the signal and observed bids. This also applies to all other models considered in this
paper. We therefore restrict ourselves to linear information use in all estimations.
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is on average higher than the fourth bid in the AV (Milgrom and Weber, 1982).

Bikhchandani et al. (2002) have identified other symmetric Nash equilibria that

implement the same outcome. In such equilibria, the first three bidders drop out

at a fraction � 2 (0; 1) of the bids at which they dropped out in the just described

equilibrium, and the last two bidders bid as before.9

AV and JEA: A behavioral perspective

Overbidding is often observed in experimental common value auctions, suggesting

that in practice bids may not align well with Nash equilibrium predictions. Even in

the AV, bidding in agreement with a symmetric equilibrium is quite sophisticated

and requires bidders to (i) use their prior about the distribution of the value; (ii)

account for the fact that the bidder with the highest signal is predicted to win the

auction. Thus, to avoid the winner’s curse, bids need to be shaded.

Simpler behavioral rules have been proposed in alternative to Nash equilibrium

bidding. For example, bidders in the AV who ignore both (i) and (ii), and only

rely on their private signal, may adopt the “bid signal”-heuristic (Goeree and

Offerman, 2003b): b(xi) = xi, which leads to expected overbidding.

The JEA, on the other hand, allows bidders to observe early exits of other

bidders with low signals. This could make (ii), i.e., the fact that winning bidders

receive higher signals than their peers, transparent to bidders in a natural way. The

“bid signal”-heuristic remains available in the JEA. However, by raising awareness

about the winner’s curse, the JEA can lead to less overbidding. The “signal averag-

ing rule” proposed by Levin et al. (1996) captures this intuition. According to this

rule, bidders bid an equally weighted average of their own signal and the signals

of their fellow bidders, revealed from the previous dropouts. After j � 1 bidders

dropped out, with the vector of revealed signals being Yi = fYi;(4); : : : ; Yi;(5�j+1)g,
this implies the following bid: bj(xi;Yi) = 1

j
xi + 1

j

Pj�1
k=1 Yi;(5�k).

10 In expecta-

tion, the “signal averaging rule” corrects for the overbidding observed in the “bid

signal”-heuristic. If bidders follow these two behavioral rules in the JEA and the

AV respectively, then the former format is predicted to raise lower revenues.

Somewhat more sophisticated bidders could process information about the

9Bikhchandani and Riley (1991) study asymmetric Nash equilibria and show that they can
lead to different revenue rankings than those established by Milgrom and Weber (1982). In our
experiment, all bidders are treated symmetrically and there is nothing that facilitates coordina-
tion on an asymmetric equilibrium. In this sense, a symmetric equilibrium is more plausible.

10Note that this rule can be plugged in iteratively, such that bidding depends only on the most
recent dropout, which is an average of all previously revealed signals. This yields bj(xi; bj�1) =
1
j xi + j�1

j bj�1.
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prior distribution of the value, and thereby accommodate (i), incorporating infor-

mation on the prior. This would lead to a slightly modified versions of the two

rules above, the “Bayesian bid signal”-heuristic, and the “Bayesian signal aver-

aging rule”. By anchoring bidding to the prior, these rules lead to less extreme

under- and overbidding. However they continue to predict that the JEA raises

lower revenues than the AV.

In the “Bayesian bid signal”-heuristic bidders bid the expected value of the

good for sale, conditional on one’s signal: b(xi) = E[V jxi] = xi � E[�ijxi]. Goeree

and Offerman (2003b) show that b(xi) =
�2
V xi+�

2
��

�2
V +�2

�
. According to the “Bayesian

signal averaging rule”, bidders combine Bayes rule with the symmetric signal av-

eraging rule.11 After j � 1 > 0 observed dropouts, bidder i calculates the average

of available signals x̄i = 1
j
xi + 1

j

Pj�1
k=1 Yi;(5�k) and bids b(x̄i) =

�2
V �xi+�

2
��

�2
V +�2

�
.

Nash equilibrium predictions and predictions based on behavioral rules now

lead to conflicting effects of information revelation on revenues. While private

signals can be inferred in both types of benchmarks, revenue ranking predictions

with the behavioral rules are driven by the degree to which bidders’ are made

aware of the winners’ curse in the JEA relative to the AV.

Using our parameterization and draws, Table 1 summarizes the revenue pre-

dictions for the Nash Equilibrium and the behavioral models that we discussed.12

Table 1: Revenue predictions

AV JEA

Nash equilibrium 95.8 97.4
Bid signal 117.4 117.4
Signal averaging rule 117.4 91.1
Bayesian bid signal 105.9 105.9
Bayesian signal averaging 105.9 94.0

Nash equilibrium revenues are only slightly higher in the JEA than in the AV.

This is not an artifact of our parameter choices. As we show in Appendix Section

A.2, similar minor revenue differences result for various combinations of variances

of the values and errors. In both formats, the winners capture some information

rents and make positive profits, as the price-determining bidder in equilibrium

11A peculiar feature of the setup of Levin et al. (1996) with uniformly distributed values and
signals is that a Bayesian will form the same belief as a näıve bidder who ignores the prior. This
is not the case in our setup with normally distributed values and errors.

12Note that the revenue prediction of a model only depend on the revenue-determining bidder
using the particular model. Theoretically, in the JEA, bidders are able to infer all other bidders’
signals irrespective of the model these other bidders are using, as long as all bidders hold correct
beliefs on which model others are using.
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slightly underestimates the value by design of the equilibrium bidding strategies.

The differences in predictions for the behavioral models are much larger. More-

over, the behavioral rules yield losses for the winners in the AV. In the JEA, bidders

make substantial profits if they use (Bayesian) signal averaging rules.13

The Oral Outcry: information aggregation and behavioral biases

The Oral Outcry auction format is very rich and there are no clear Nash equilibria

for this format. Still, we can make some observations about the potential of the

Oral Outcry for information aggregation and revenues. In this format, bidding

may proceed incrementally as in the Japanese-English auction. That is, bidders

may constantly be active until their reservation price is reached, which would allow

for similar inference as in the JEA.

This format can also encourage jump bidding. From a strategic point of view,

jump bidding can be used to signal a high estimated value of the item and deter

other bidders from continuing to bid. Avery (1998) shows how strategic jump

bidding can be supported in an equilibrium of a game that is much simpler than

ours. Similarly, jump bidding may obfuscate information, as shown in a stylized

auction game in Ettinger and Michelucci (2016). In either case, severe jump

bidding suppresses information aggregation and its revenue-enhancing effects.

On the other hand, recent experimental findings suggest that some features in

Oral Outcry may be particularly prone to revenue-enhancing behavioral biases,

such as auction fever (Heyman et al., 2004; Ehrhart et al., 2015). Similarly, jump

bidding might not be used in the sophisticated way studied theoretically, e.g. it

might rather be driven by bidders’ impatience.

4 Information aggregation: Measure and bench-

marks

When information is successfully aggregated, bidding and prices move closer to the

underlying common value (Wilson, 1977; Kremer, 2002). We measure the degree

of information aggregation with the squared distance between the price and the

common value and compare it across formats (Hanson et al., 2006). A distance of

0 would imply perfect information aggregation in the sense that bidders inferred

the exact true value.

13Note that our experimental setup leads to low expected revenue with signal averaging-rules.
This allows us to test the rules beyond what was possible in Levin et al. (1996). In their setup,
signal averaging-rules lead to predictions more similar to Nash equilibrium revenues.
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The possibility of perfect inference is curtailed by the noisiness of the signals.

We account for the maximal information potentially available, the one contained

in the five signals, by computing the Full Information benchmark. In it, all five

signals are revealed and bidders bid the conditional expected value of the item

given these signals. Additionally, we model the lowest degree of aggregation with

the No Information benchmark, where bidders bid the prior average common value,

thus ignoring also their own private signal.

We illustrate the Full and No Information benchmark as the lower and upper

bounds of a segment measuring information aggregation. On this segment, lower

values indicate a better approximation of the common value by the price, hence

improved information aggregation.

In the segment, we also show how much information aggregation is predicted

in Nash equilibrium and by some exemplary behavioral models. In the Nash

equilibrium of the JEA, we see that the Full Information benchmark is almost

attained.14 In the Nash equilibrium of the AV, the squared distance to the common

value is higher, as less information aggregation is possible. By comparing the

Nash equilibrium predictions of the two formats, we see the theoretical impact of

information aggregation: If dropouts are observable, bidders obtain a more precise

estimate of the value and the price follows the common value more accurately.

The prediction that the JEA leads to higher information aggregation compared

to the AV generalizes to the behavioral models of bidding behavior. The Bayesian

bid signal heuristic (BBS) in the AV auctions predicts a larger dispersion around

the common value compared to Bayesian signal averaging (BSA) in the JEA.15

Therefore, even when processing information in a sub-optimal manner, bidders are

predicted to improve their estimate of the value when they observe others’ bids.

Figure 1: Squared distance to common value - JEA and AV
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14It is not fully attained for two reasons: (i) the bid determining the price is based on 4, rather
than 5, signals; (ii) bidders maximize expected profit, with information rents for the winner.

15This also holds for the comparison of signal averaging- and bid signal-heuristics, which are
omitted for brevity.
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5 Experimental design and procedures

The computerized laboratory experiment was conducted in July and October 2018

at the CREED laboratory of the University of Amsterdam. In total, we ran 30

sessions with 10 subjects each. We preregistered this experiment (Offerman et al.,

2019). Most subjects were students of business, economics or other social sciences,

with 50.7% being male and an average age of 23. Each subject participated in

only one session.

The experiment was conducted in a laboratory with soundproof cubicles. As

a consequence, information revelation was entirely controlled as intended in the

experimental design. In Appendix B, we present the instructions together with

screenshots of the auction interface for all formats. Subjects read the computerized

instructions at their own pace, and they had to correctly complete a set of test

questions before they could proceed to the experiment. Before the experiment

started, subjects received a handout with a summary of the instructions. At the

end of the experiment, subjects filled out a brief questionnaire.

In the experiment, 30 auction rounds were played. Payment was based on five

rounds randomly selected at the end of the experiment. Subjects earned points

that were exchanged according to a rate of e 0.25 for each point. Subjects earned

on average e 24.28 (standard deviation: 6.02, minimum earnings were set to e 7)

in approximately two hours.16

We run three between-subject treatments, each corresponding to one auction

format. In each ten-subject session, subjects were randomly rematched into groups

of five every round, therefore a matching group of 10 subjects coincides with the

session size. Common values and corresponding signals were drawn before sessions

started. Draws are i.i.d. across rounds for common values, and error draws are

also i.i.d. across subjects. For the experiment, we use identical draws in the

identical order across treatments. Thus, treatment differences are not driven by

differences in random draws. In the experiment, we truncate common value and

signal draws between 0 and 200 and also only allow for bids between 0 and 200.17

We communicated the distributions of values and signals with the help of

density plots and we allowed subjects to generate example draws for the common

value and corresponding signals. At the start of each round in each auction,

16In the experiment, only one subject had a negative payment balance if calculating total
earnings across all rounds. In the pre-registration, we announced that we also analyze our data
without bankrupted subjects. However, excluding this one subject does not affect results.

17We discarded a set of draws whenever a common value or signal exceeded our bounds. This
occurred for 0 out 600 common value draws, and 121 out of 6000 drawn signals. Due to the
small scale of this phenomenon, we ignore truncation in our analysis.
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subjects were privately informed about their signals and the auction started as

soon as all bidders in a session indicated that they were ready.

The rules of the auction formats were described in Section 3. The auction

procedure was visualized with a thermometer. In the AV and the JEA, the price

increased from 0 by one point every 650 milliseconds. Approximately three times

per second, the program checked whether any bidder dropped out. In the JEA,

bidders were shown the prices at which the first, second and third dropout oc-

curred. After a dropout in this auction, there was a pause of four seconds where

the price did not rise to allow the remaining bidders to process the information.

In all three treatments, at the end of each round all subjects were shown the

price which the winner paid and the common value that was drawn. In each round,

each bidder was endowed with 20 points, and the winning bidder was additionally

paid the difference between the common value and the second highest bid. When

negative, the difference was deducted.

In the 13 sessions ran in October 2018, we included two additional incentivized

tasks at the end to investigate some conjectures developed after the first sessions.

First, we used a measure adapted from Goeree and Yariv (2015) to elicit a sub-

ject’s tendency to conform to others’ choices in an environment where these choices

contain no information. Subjects had an incentive to guess an unknown binary

state. Their choice was to either receive a noisy but informative signal of the state,

or to sample the uninformative decisions from three previous subjects. Crucially,

these previous subjects had no access to any information about the true state, and

subjects were made aware of this fact. Second, we obtained a measure of subjects’

social preferences by using the circle test to measure their value orientation (Son-

nemans et al., 2006). We included these measures to test some conjectures about

the exit decisions of subjects with low signals in the Japanese-English auction.

In addition, in the oral outcry auction we included two unincentivized question-

naire measures of subjects’ tendency to succumb to endowment effects to further

investigate the role of the quasi-endowment effect in this auction.18

Many features of our experimental design are motivated by the theoretical

model with affiliated signals (Milgrom and Weber, 1982). The situation that we

study is stylized, and our setup may offer more opportunities for learning than

18Question 1 was: “Suppose you paid e 30 for 5 cello lessons. After the first lesson you realize
that you really don’t like it. How many of the remaining lessons do you attend? You cannot get
the money back.” Question 2 was: “Suppose that tickets are on sale for the National Lottery to
be played out in one week, with a prize of e 100.000 and you just bought one ticket for e 2.50.
A colleague offers you money to buy the ticket from you. What is the minimum price at which
you are willing to sell the ticket to him?”
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bidders would have outside of the laboratory when they bid on real commodities.

In auctions outside of the laboratory, it may be much less clear to the winner

that he suffered a loss, which may impede learning. In addition, our conjecture is

that bidders may suffer more from endowment effects when they are bidding on

a real commodity than when they are bidding on a fictitious good with induced

value. From this perspective, we expect that biases may be larger outside of the

laboratory.

6 Experimental results

In this Section we present the experimental results. We first present an overview

of the revenues generated in the three auctions. Next, we discuss information use

in the Japanese-English auction (JEA). Then, we compare the level of information

aggregation in all three formats. Finally, we present evidence on jump bidding and

the quasi-endowment effect in the Oral Outcry auction (OO).

In our analysis, we use data from all 30 rounds. We present results on expe-

rienced bidders in the Appendix Section A.7. Results are mostly in line with the

main analysis, otherwise we address this within the main text.

6.1 Revenue

Figure 2 and Table 2 present mean revenues by treatment.19 Average revenues

are quite similar in the AV and the JEA, but are substantially larger in the OO.

Differences are most pronounced in the first 15 rounds, but differences continue

to be significant also for experienced bidders in the last 15 rounds. Table 2 also

reports test results of comparisons of revenue across treatments together with test

results of the comparisons of revenues with the Nash benchmark.20

We find strongly significant revenue differences between the OO and both other

auction formats. While the theory predicts higher revenue in the JEA than in the

AV, we cannot reject equality of revenues between the two formats. In both the AV

and the JEA, actual revenues deviate systematically from the Nash benchmark.

19In one auction in the AV, the auction unintentionally ended after only three, not four,
bidders dropped out. We remove the data from this particular auction.

20Treatment results are robust to using parametric tests and the non-significance of a treatment
difference is not arising from comparing matching group averages. When regressing revenues on
treatment dummies, clustering standard errors on a matching group-level (600 observations per
treatment), we find that compared to a baseline of the AV, the dummy on the JEA is not
significant with a p-value=.778, whereas the dummy on the OO is significant at a p-value=.005.
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Figure 2: Mean revenue, Nash equilibrium predictions and common values

Table 2: Revenue statistics by treatment

Revenue

Mean (Standard deviation)

Round 1-30 1-15 16-30

AV 103.4 (17.9) 106.1 (19.5) 100.6 (15.7)
JEA 103.9 (21.2) 106.5 (20.9) 101.3 (21.3)
OO 112.2 (27.5) 118.0 (31.2) 106.5 (21.7)

Treatment effects: p-values

Round 1-30 1-15 16-30

AV vs.
JEA .597 .940 .734
OO .003 .011 .049

JEA vs. OO .009 .003 .059

Revenue difference to Nash eq’m: p-values

Round 1-30 1-15 16-30

AV vs. Nash eq’m .001 .002 .010

JEA vs. Nash eq’m .001 .000 .049

Notes: Mean and standard deviation of revenues by treatment, over time. Test
results (p-values) of revenue comparisons across treatments and to the Nash
equilibrium prediction. For each test, we use the averages per matching group
as independent observations for the Mann-Whitney U-tests (MWU). This gives
10 observations per treatment.

One explanation for the failure of rejecting equality of revenues between the

AV and the JEA is that bidders simply ignore the information that is revealed in

the JEA. Another possibility is that the more transparent JEA activates different

20



behavioral forces that offset each other. In the next Section we explore these

possible explanations.21

6.2 Information processing in JEA

We find that bidders overbid both in the JEA and in the AV compared to the

rational benchmark. Our data also do not agree with the revenue prediction

of (Bayesian) signal averaging, according to which revenue in the JEA must be

lower compared to the AV. These findings raise the question whether subjects

make use in any way of the information released in the auction. One possibility

is that bidders in the JEA disregard the bidding of others and only use their

private information. In this Section we show that this is not the case. We start by

comparing how bids correlate in the JEA with previous dropouts, and contrast this

to information use in the theoretical benchmarks. Then we proceed by showing

that bidders’ dropouts correlate more with previous dropouts in the JEA than in

the AV, in which endogenous information of others’ bids is not available.

Table 3 presents the results of a fixed-effects regression analysis that models

how bids correlate with available information. Define as bj;i;t the dropout price

of bidder i in round t, where, for ease of exposition, j denotes the dropout order

corresponding to that observation. Further denote with bj�1;t the vector collecting

the j�1 dropout prices preceding the j�th bid in round t. For each j 2 f1; : : : ; 4g
we pool data for each dropout order j and separately estimate the models:

bj;i;t = � + �xi;t + γᵀbj�1;t + �t+ �i + �i;t

where xi;t is the private signal of bidder i and t is the auction round. �i is

a bidder-specific fixed effect and �i;t is a bidder-round error. We use the within-

estimator, where we are demeaning the variables with their time-averaged coun-

terparts. This allows us to interpret the constant as the average intercept across

bidders, and each bidder’s fixed effect as the deviation in this bidder’s bidding

level from the average.

Models (1) to (4) provide fixed effects estimates of dropout prices regressed

on available information, similar to the analysis by Levin et al. (1996). There

is a recurring pattern in how subjects’ bids correlate with available information:

Bidders’ dropouts depend significantly only on their own signal and the just pre-

21In the preregistration plan, we announced that we would compare how well rational and
behavioral models organize actual bidding. It turns out that none of the models comes even
close to explaining the early dropouts in the auction. As a result, we have chosen to relegate
this analysis to the Appendix Section A.5.
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Table 3: Bidders’ use of information in the JEA

(1) (2) (3) (4) (5) (6) (7) (8) (9)

b1 b2 b3 b4 V dBR
Observed Observed Observed Observed Nash SA BSA

x 0.294 0.267 0.172 0.118 0.287 0.250 0.168 0.250 0.288
(0.057) (0.034) (0.027) (0.016) (.) (.) (.) (0.020) (0.001)

b1 0.372 0.023 0.025 0.100 0 0 -0.009 0.032
(0.035) (0.018) (0.015) (.) (.) (.) (0.025) (0.003)

b2 0.552 -0.038 0.167 0 0 -0.003 0.060
(0.044) (0.037) (.) (.) (.) (0.052) (0.003)

b3 0.709 0.333 0.750 0.832 0.291 0.151
(0.072) (.) (.) (.) (0.070) (0.003)

t -0.316 -0.122 -0.083 -0.075 0.295 0.087
(0.281) (0.114) (0.074) (0.031) (0.073) (0.002)

Constant 35.185 41.823 32.049 26.290 11.265 0 0 41.882 44.804
(8.628) (2.723) (2.933) (3.619) (.) (.) (.) (3.799) (0.361)

Observations 600 600 600 600 600 600
Adj. R2 0.119 0.491 0.756 0.817 0.362 0.996
Adj. R2 absorb. i 0.425 0.592 0.768 0.821
Rounds 1-30 1-30 1-30 1-30 1-30 1-30
Estimation FE FE FE FE OLS OLS

Notes: bj : dropout price at order j; V : common value; x: own signal. (1) to (4) are �xed e�ects estimates (within estimation) of
information use. Dependent variables (in columns) are dropout prices at each order, e.g. (1) are all bidders dropping out �rst in
an auction. Regressors (in rows) are the available information at each dropout order, i.e., the signal x and the preceding dropout
prices bj�1. (5) to (7) show how information is used in three canonical models, only for the fourth dropout. SA refers to the signal
averaging-rule, BSA to the Bayesian signal averaging-rule. Note that these show how theoretical bids respond to earlier bids, where
these bids are also calculated to follow the theoretical models. (8) shows how the price-setting bidder would have to use information to
predict the common value after observing three dropouts. (9) shows how the bidder dropping out fourth would weigh information in
an empirical best response. We provide adjusted R2 of the original within-estimated model, as well as from estimating standard OLS
where we include subject-speci�c absorbing indicators. The latter also includes �t obtained from subject �xed e�ects. Standard errors
in parentheses, clustered at the matching group level.
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ceding dropout.22 The most recent dropout receives much more relative weight

than bidders’ signals. Thus, bids appear to react quite strongly to the auction

proceedings.23

All theoretical models considered in this paper process information linearly

(derivations available on request).24 In models (5) to (7), we provide theoretical

benchmarks for the fourth dropouts, representing informational weights implied

by these models. These models show how bids would react to (theoretical) earlier

dropouts, and are purely theoretical, not estimated.25 By comparing estimated in-

formation use to the use implied by these models we can evaluate whether bidding

strategies are consistent with any of the models, which can be helpful to predict

outcomes in other auction environments.

In model (5), Nash equilibrium, bidders do not ignore information from the

first and second dropouts when they choose the fourth dropout conditional on

the third dropout, contrary to information use in our data. Instead, the observed

pattern is more in agreement with the signal averaging rules (models (6) due to

Levin et al. (1996) and (7)). Both signal averaging rules correctly predict that the

last dropout is a sufficient statistic for all previously revealed information, as this

bid summarizes all previously revealed information. Qualitatively, the Bayesian

signal averaging rule (model (7)) performs particularly well, as it approximates

the relative weight on last dropout compared to the own signal more closely than

in (6). A further pattern in favor of Bayesian signal averaging is that bidders do

not ignore the prior. In the AV, which offers the cleanest view on whether subjects

use the prior, bids are anchored towards the mean common value. Bidders who

receive a signal above 100 bid on average 72.4% of their signal, while bidders with

a signal of at most 100 bid on average 117.4% of their signal.

Still, the bids predicted by the Bayesian signal averaging rule do differ signifi-

22Conditional on using information summarized in the previous dropouts, earlier bids do not
add additional explanatory power. There is indeed a correlation to earlier bids, which is fully
captured in the reaction to the current dropout. Repeating (3) and (4) without bj�1;t yields
significant coefficients on bj�2;t.

23This analysis does not shed light on the possibility that the strong weight on the most recent
dropout is due to correlation neglect (Enke and Zimmermann, 2019). With correlation neglect,
information in early dropouts is double-counted in later dropouts. In the Appendix Section
A.9, we present regressions similar to the above, while excluding bidders’ private information.
We then predict residuals in this estimations, which capture bidders’ private information (their
signals and noise). We then regress later bids on all residuals. We find little evidence for
strong correlation neglect, as especially residuals from late dropout orders most strongly explain
variation in bids. This suggests that subjects understand that the most recent dropout contains
information of the signals conveyed in the earlier dropouts.

24We verified that our findings are not driven by the linear impact of information, by repeating
(4) and (8) with the additional regressors x2 and (b3)2. Both are not significant in either model.

25Applying OLS to simulated bids also recovers the coefficients presented in Table 3.
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cantly from observed behavior. The intercepts across all dropout orders are quite

large and lead to the observed overbidding.26 As later bids are incorporating re-

vealed information, constant overbidding early on carries over to later bids, which

then determine revenue.

One remaining question is whether observed early dropouts are informative for

subsequent bidders, and in how far bidders could use these bids to improve their

estimates of the common value. In Nash equilibrium, all available information

should be used when best responding, see model (5). However, early bids differ

systematically from Nash equilibrium bids, and are potentially less informative of

the common value than they are in Nash equilibrium. The informativeness of early

bids should determine how later bids should respond to early bids. We proceed

by using two types of analyses: studying (i) how informative bids are of the value

and (ii) how information is used in an empirical best reply.

In estimation (8) we provide an analysis of the informational content of ob-

served bids. We regress the common value on the information available to the

bidder dropping out fourth. This analysis studies how the information available

to the bidder determining the price is predictive of the common value, which at

the end of each round is revealed to the subjects. Thus, model (8) provides a

benchmark of what information is useful to bidders when attempting to predict

the value using a linear rule.27 In model (8), we observe that it is sufficient for

bidders to attach positive weights only to the third dropout and own signal to

predict the common value. This implies that early bids are not useful to predict

the common value, which in fact our subjects appear to incorporate by disregard-

ing this information. However, the relative weights attached to the third dropout

relative to the own signal differ strongly from the rule predicting the value, as

bidders appear to react too much to the third dropout given the informational

content of these bids.

In (9), we study how information would be weighted in an empirical best re-

sponse. In this, we assume that the two bidders that remain in the auction longest

26In fact, we can reject the coefficient restrictions implied by (5) to (7) in F-tests based on the
estimated equation (4), with p-values=.000.

27Note that the positive coefficient on t is a mechanical effect of all bids decreasing in t (see
(1) to (4)), as V is in expectation constant over time. From experience, bidders learn that the
amount of overbidding by others decreases over time (at the end of each round the common
value of a round is communicated). To accommodate for this downward trend in the bidding,
given the same previous dropouts, a bidder who estimates the common value will form a higher
prediction of the common value in later rounds compared to early rounds. Such a compensating
factor would have been absent if there had not been a trend in subjects’ bidding. Allowing
for a more flexible time trend in (8) with squared round or round fixed effects does not affect
estimates on information use (b1, b2, b3, x).
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bid the expected value of the item for sale, conditional on the other remaining bid-

der holding an equally high signal as the own signal, and incorporating information

revealed in the previous dropouts. To infer signals from early dropouts, we use

linear regressions in which we regress signals on observed bids, round, session fixed

effects and signals predicted from earlier bids if available.28 The empirical best

response then equals the conditional expected value calculated on the basis of

the inferred signals, under the assumptions that the other remaining bidder has

a signal that equals the own signal, using the result by DeGroot (2005).29 By

assuming that the other remaining bidder has a signal that equals the own sig-

nal, the bidder beats types that are below the own type, and by doing so wins in

cases where the expected profit is positive, and loses against types that are above

the own type, and thereby avoids winning in cases where the expected profit is

negative. Notice that the procedure is quite similar to how bidders bid in the

symmetric Nash equilibrium. The difference lies in how signal are inferred from

earlier bids. In the Nash equilibrium, bidders infer the signals of bidders that

previously dropped out from their actual (Nash equilibrium) bidding strategies.

In our empirical best response, signals are estimated from previous dropouts. We

then regress the obtained empirical best response on the same set of observables

for the second-highest bidder.

Consistent with the findings of model (8), (9) shows that early bids optimally

receive little weight in an empirical best response. Due to early bidding being less

informative than in Nash equilibrium, the optimal weights are below the weights

on observed bids in model (5). However, even if the estimated coefficients are

small, they are significant and positive. Again similar to (8), (9) shows that

bidders do not rely sufficiently strongly on their own signal when bidding, and

disregard valuable information in bidding.30

Importantly, this analysis in itself does not provide evidence that bidders ac-

tively incorporate information. This is the case as the regressions in Table 3

organize bids into order statistics and this mechanically produces some degree of

correlation, even if bidders were to ignore entirely the bidding behavior of others.

Given that a bidder’s bid is noisy and not completely determined by the own sig-

nal, information will be conveyed in the previous dropout(s). As an illustration,

28We reproduce these estimations in the Appendix, Table 15.
29In calculating the conditional expected value, we invoke the assumption that signals inferred

from previous dropouts are distributed as the true signals are (that is, conditional on the value
they are i:i:d:, N (0; 35)).

30Note that R2 is mechanically high in this regression because the best response is calculated
as a linear function of the bids.
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consider the case in which the previous dropout is very high, in fact higher than

the expected current dropout conditional on own signal. Then, by definition, the

expected current dropout conditional on previous dropout and own signal will

be higher than the expected dropout level conditional on own signal only, thus

leading to positive residual correlation between dropout orders.

This produces a mechanical correlation between dropouts and previous dropouts

even if bidders do not pay any attention to the previous dropouts.

In order to use correlations among dropout prices as evidence for information

processing, we need to move from an absolute to a comparative approach. In Table

4, we show excerpts from regressions where we pool data from the AV and the JEA

and regress bids on the previous dropouts, signals, and interactions for the JEA.

We refer to Table 16 in the Appendix for the full results. In the AV, where by

design no information can be extracted from the unobservable bidding of others,

we observe the mechanical correlation in dropout order statistics, as all coefficients

on the just preceding dropouts bj�1;t are significant at conventional levels. Using

the bidding in the AV as a benchmark, we measure the amount of information

processing in the JEA by computing the additional correlation observed in the

JEA compared to the AV. Table 4 shows that the slope parameters on every

just-preceding bid are statistically larger in the JEA compared to the AV at each

dropout order. As bids in the JEA are more strongly correlated than in the AV,

we can conclude that bidders do react to the information contained in the bids of

others.

Table 4: Comparing information use in the AV and the JEA

b2 b3 b4

bj�1 0.285 0.357 0.465
(0.0309) (0.0319) (0.0440)

JEA � bj�1 0.0871 0.195 0.244
(0.0463) (0.0533) (0.0827)

Observations 1199 1199 1199
Adjusted R2 .502 0.732 0.777

Notes: bj�1 denotes the just preceding dropout,
e.g. it is b1 for b2. JEA is a dummy equal one for
JEA auctions. Additional variables omitted from
the table: all regressions include signal x, round t,
all preceding dropouts (bj�k for all k 2 f1; : : : ; j �
1g) as well as all these variables interacted with the
JEA-dummy and a constant. For the full regression
results, see Table 16 in the Appendix. Standard
errors in parentheses and clustered at the matching
group level.

To sum up, we conclude that subjects’ bidding is consistent with them paying

attention and responding to the bids of others in the JEA. Compared to the empir-
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ical best response, subjects pay too much attention to the most recent dropout and

underweigh their own signal. How subjects’ bidding weighs information in the own

signal relative to the observed dropout is qualitatively in line with Bayesian signal

averaging. Still, our data does not accord with the prediction of the Bayesian

signal averaging model that lower revenue will result in the JEA than in the AV.

In the next Section we address how heterogeneity in early bidding contributes to

understanding this puzzle.

6.3 Exploring heterogeneity in bidding

In this Section, we investigate whether individual-specific characteristics correlate

with bidders’ behavior in early dropouts. Bidding behavior in the JEA is quite

heterogeneous, and especially so at early dropouts - in Table 3, we see that the

R2 increases in dropout orders. Additionally, especially at early dropout orders,

subject-level fixed effects bring in significant additional explanatory power. Our

finding that individual-specific characteristics matter more at early stages of bid-

ding in the JEA agrees with the observation that deviations from the theoretical

benchmark are less costly at these early stages in this auction format. For in-

stance, a bidder who considers dropping out first may choose to overbid almost

without costs: even when overbidding, the bidder can avoid winning by imme-

diately dropping out when others do so. Likewise, if this bidder decides to drop

somewhat earlier than the theoretical benchmark, this also happens almost with-

out costs because the chances that all the others would drop before the theoretical

benchmark is negligible if no other bidder has dropped out yet.

To shed light on whether there are systematic patterns in this heterogeneity in

bidding behavior, we elicited subjects’ social value orientation and their tendency

for imitation at the end of the experiment for the last 13 sessions.31 For the

imitation measurement, subject could choose to sample non-informative social

information of prior participants instead of obtaining an informative signal. This

behavior is consistent with a desire to imitate others. Participants that chose to

reveal uninformative choices are classified as imitators, which applies to 26.9%

31Another candidate to explain deviations from risk neutral Nash bidding is risk aversion.
Because all auctions use the second-price rule and there is uncertainty about the value, risk
aversion will have a downward pressure on Nash equilibrium bids (see also Levin et al. (1996)).
Given that observed bids tend to be higher than risk neutral Nash equilibrium bids, we think that
risk aversion is a less important force in our experiment. Similarly, the heterogeneous behavior of
early dropouts is not only incompatible with the symmetric equilibrium in Milgrom and Weber
(1982), but also with the asymmetric equilibria in open auctions identified by Bikhchandani and
Riley (1991). In addition, the asymmetric equilibria predict lower revenues in the JEA, while
we observe revenue in excess of the symmetric Nash equilibrium.
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of our participants.32 Social value orientation is measured as an angle, where

0� correspond to a dictator keeping all to herself, 45� giving an equal amount to

recipient and herself and 90� giving everything to the recipient. We find an average

SVO of 21:13�, with a standard deviation of 19:93�.

To investigate whether these measures correlate with heterogeneity in bidding

behavior we exploit that the estimations in Table 3 provide us with estimates of

bidder fixed effects. In this context, the bidder fixed effect captures bidder-specific

level shifts of bids, holding the use of information constant across bidders. Cru-

cially, identical bidders may behave differently between different auction formats,

especially as behavioral motives may be differentially triggered. Note that our

within-estimations impose that the average bidder fixed effects have a mean of

zero. This means that any bidder’s fixed effect can be interpreted as a deviation

from the average bidding behavior within our sample for each treatment.

Per participant, we average the fixed effects of the first and second dropouts

as well as the fixed effects from the third and fourth dropout. For the AV and

the JEA separately, we then regress the averaged fixed effects on subjects’ social

value orientation and imitation proneness. Table 5 presents OLS estimates.33

In both treatments, estimates imply that imitators are willing to bid higher

than non-imitators. The effects ares similar in size but only significant in the

AV, which may be due to a lack of power. In any case, the fact that the bids

of imitators are not higher in the JEA than in the AV hints at the possibility

that this measure may not only capture a tendency to imitate but also general

overbidding caused by confusion.34 From this perspective, imitation is not a good

candidate to explain differential bidding in the early dropouts between the two

auction formats.

Our conjecture was that SVO would explain differences in the early bidding

between the two auctions. The coefficient for SVO in column (2) of Table 5 is

32In a similar setting, Goeree and Yariv (2015) find that 34% of subjects chose such informa-
tion.

33Note that the fixed effects are estimated, and thus may contain noise from the first stage
in this estimation procedure. In the Appendix, Section A.10, we show that point estimates
are similar using WLS, which addresses concerns that some fixed effects might be estimated
more noisily than others. These observations receive less weight in variance-weighted WLS. The
estimates on SVO and Imitator in (2) are significant in this specification, which suggests that
the noise in estimating fixed effects may be important. Point estimates with experienced bidders
are mostly similar, see Table 13 in the Appendix. The coefficient on Imitator is insignificant
across specifications (1) to (3), and the coefficient on SVO is significant and positive in (3) and
(4).

34There are also situational factors that affect the extent of overbidding. For instance, Levin
et al. (1996) and Goeree and Offerman (2002) find that subjects’ overbidding enhances with the
variance of the noise term in the signals.
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Table 5: Bidder fixed effects and their characteristics

(1) (2) (3) (4)
Average bidder fixed effect

b1 & b2 b3 & b4

AV JEA AV JEA

SVO 0.125 -0.202 0.005 0.027
(0.045) (0.146) (0.120) (0.078)

Imitator 5.699 5.213 6.528 1.575
(1.479) (3.823) (3.121) (0.471)

Constant -1.876 6.225 -4.674 -1.080
(1.919) (2.363) (1.678) (2.681)

Observations 50 40 50 40
Adjusted R2 0.031 0.014 0.048 -0.031

Notes: Average �xed e�ects from regressing bids on available in-
formation for �rst and second vs. third and fourth dropout. SVO
is a subject’s social value orientation, in degrees. Imitator is a
dummy variable equal one if a subject chose to retrieve social in-
formation when this contains no valuable information on the true
state. Standard errors in parentheses, clustered at the matching
group level.

in line with the conjecture that spiteful bidders bid higher early in the JEA to

drive up the price for others: only in JEA the coefficient is negative. However, the

standard error is large, and we cannot conclude whether there is a negative effect

or no effect of SVO on early bidding in JEA.35

Given that the evidence in Table 5 is not conclusive about the effect of SVO on

early bidding in JEA, we looked further into how SVO affects bidding in the two

auction formats. As we expected when we decided to measure SVO, competitors,

those with below-median SVO, bid on average 71.3 in the first two dropouts in

JEA, significantly more than in the AV where they bid on average 56.4 in the

first two dropouts (Mann-Whitney U-test, 9 observations, p-value=0.086). This

finding reflects that driving up the price for others is relatively cheap in the JEA,

because this format allows bidders to enhance the price for others without much

risk of actually winning the good. To put things into perspective, it is not clear

that cooperators bid significantly more in the early dropouts of the JEA than in

the AV (average bid of 59.6 in the AV versus 70.8 in the JEA; Mann-Whitney

U-test, 9 observations, p-value=0.327).

35Somewhat surprisingly, more pro-social bidders bid slightly higher on average in the early
bidding in the AV. Note that for the SVO, inequality averse participants are classified as pro-
social. Therefore, bidding higher initially in the AV can be consistent with bidders trying to
minimize payoff inequality, which might arise if an opponent wins at a low price. Pro-social
bidders’ behavior is not significantly different in the early bidding across auctions.
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Figure 3 displays for each of the two auction formats the SVO per dropout

order. Whereas there is a slight increase of SVO over dropout orders in the AV,

there is a surprising but intuitive pattern in the JEA: Bidders who drop out first

or last have on average a higher SVO than bidders who drop out in the middle.

This suggests that cooperators decide at the start to either be nice and drop out

first or to go all-in in a serious attempt to win the auction. By doing so they would

refrain from driving up the price for others when they do not win. In the cases

where they decide to win the auction, cooperators have to outbid spiteful bidders,

who are bidding more aggressively than they would have in the AV. We find that

cooperators (with an SVO above the median) end up significantly more often in

an extreme position (either first or last) than competitive bidders (those with an

SVO below the median): Mann-Whitney U-test, 8 observations, p-value=0.043.

This pattern only materializes in the JEA: the same test for the AV is insignificant

(p-value=0.917, 10 observations).36

Figure 3: SVO by dropout order

Overall, our suggestive evidence is consistent with the following picture of

how SVO may affect bidding in the two auction formats. In the JEA, spiteful

bidders tend to bid higher at the start than they would have in the AV, because

the information about how many other bidders are still active makes it cheap for

them to overbid. Without too much risk they can stay longer in the auction and

drive up the price without actually winning the object. Cooperators on the other

36To verify that the difference between treatments is significant, we run a logistic regression.
We regress the binary dependent variable (0 if dropping out first or last, 1 otherwise) on SVO,
Imitator and signal, a treatment dummy as well as interactions of all independent variables and
treatment. While the coefficient on SVO is not significant (p-value=0.817), the coefficient on
the interaction of JEA and SVO is negative and (weakly) significant (p-value=0.071).
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hand decide at the start of the auction whether or not they want to compete and

win the object for sale. If their signal makes them decide it is better not to win,

they drop out early and by doing so refrain from enhancing the price for others.

If they decide to compete, they relatively often end up winning the auction. In

this case, they have to outbid spiteful bidders who tend to bid higher than they

would have in the AV.

6.4 Information aggregation

Previously we showed that bidders engage in overbidding (Figure 2). Even bidders

who depart from rationality can convey information in their bids, or infer infor-

mation from others’ bids. For instance, if bidders follow a behavioral model, then

their bids will still convey information about their signals. If this is anticipated by

other bidders, bidders can still process this information in their own bids. In this

Section, we investigate the extent to which bidders aggregate information in the

different auction formats. The measure of information aggregation is the squared

distance between the price and the common value, as discussed in Section 4.

We first present a comparison between the JEA and the AV, the two auctions

that differ only in the information on previous dropouts. Both rational and behav-

ioral benchmarks predict that additional information improves bidders’ precision

in estimating the value. This prediction, however, is not borne out in our data.

Figure 4 plots the distance between price and value that is actually observed in

the data. For a comparison, it also includes Nash equilibrium predictions.

As it turns out, the theoretically predicted ranking is reversed in our data.

The observed squared distance in the AV is 411.9, and increases to 479.1 when

more information is available in the JEA. This difference is statistically significant

(p-value=0.028, MWU, 10 observations per treatment). Actually, the JEA aggre-

gates almost no information. The observed squared distance of the JEA is not

statistically different from the No Information benchmark, where the price is set

equal to the prior mean of the common value, ignoring all information contained

in signals.37

There can be two reasons why information aggregation fails in open ascending

auctions: i) there is not sufficient informational content in observable bids (in-

formation revelation) (ii) bidders do not process the available information as a

37We verified that the same ordering in our results on information aggregation is observed
when using the squared distance to the Full information benchmark as a measure, instead of
the squared distance to the common value. The latter does not directly control for variance in
signals conditional on the common value. In our analysis, this is captured by the distance to the
common value measured in the Full information benchmark.
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Figure 4: Squared distance to common value
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rational bidder would (information processing). To isolate the two forces, we use

an empirical best response dBR as described in Section 6.2, given observed bidding

behavior of early dropouts.

Note that dBR is a statistic that separates between information processing

and revelation. It represents the level at which the two remaining bidders best

respond to each other, when they incorporate information available in the experi-

ment. The gap between the observed level of information aggregation (JEA obs.)

and the maximal level of aggregation achievable given the available information

(dBR) serves as our measure of the failure of information processing. Failure in

information revelation is measured by the distance between dBR and JEA NE, as

in Nash equilibrium signals from earlier dropouts can be inferred perfectly. From

inspecting the segment, it is apparent that both forces play a role: Information

in the JEA is dissipated by noisy early dropouts and further processed in a sub-

optimal way.

Using the empirical best response, we can also provide a lower bound for the

importance of heterogeneity in early dropouts on the failure of information ag-

gregation. Using bidder fixed effects, instead of only session fixed effects, when

estimating signals from observed bids, the squared distance of the empirical best

response to the common value reduces to 303.0. The difference of this new bench-

mark to the empirical best response is significant (Wilcoxon signed-rank test,

10 observations, p-value=0.047). Note that this is a lower bound due to the role

played by individual heterogeneity, as it ignores the additional gains brought about

by bidders iteratively making the intermediate dropouts more precise, something

they cannot do as the identity of other bidders is not observed.

Lastly, when it comes to our third auction format, the OO, the higher revenue

that we observe is not caused by a higher degree of information aggregation in

this format. To the contrary, in the OO overbidding is so severe that the price is

a highly inaccurate predictor of the common value, resulting in a very imprecise

measure of information aggregation, with a squared distance of 917.0. If bidders

had simply ignored their private signal and the bidding of others, and bid the
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prior mean value according to the no-information benchmark, this distance would

shrink to 483.0. Figure 5 presents the information aggregation benchmarks of the

OO in comparison to the other auction formats.

Figure 5: Squared distance to common value, including the OO
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This lack of information aggregation cannot be attributed to information in

bids being obfuscated. The same decomposition as performed for the JEA shows

that the second-highest bidder in the OO would be able to predict the common

value relatively well if they attempted to bid the conditional expected value as in

the JEA, by incorporating the own signal and the maximal bids of the three non-

winners. This is a conservative measure of how much information is potentially

available in the OO, because it ignores other, possibly informative, observables

such as the time elapsed between bids, the size of the jump bids, or the number

of returning bidders.

6.5 Bidding in Oral Outcry auctions

We have previously seen that revenue is higher in the OO than in the other two

formats. Also, information aggregation in this format fails.

The OO differs from the two clock-formats in how bids can be submitted. In

both the AV and the JEA, the price rises at an exogenously set pace and bidders

can only decide whether to leave or remain at every price. In the OO, bidders can

submit their own bids. In the following, we discuss two ways in which this change

matters: it may trigger a quasi-endowment effect in bidders, as well as allow for

non-incremental jump bidding.

During an Oral Outcry auction, a standing bidder is identified, who is the

highest bidder at that moment. The previous literature has established that this

can induce a so-called auction fever (Heyman et al., 2004; Ehrhart et al., 2015).

A standing bidder may get used to the feeling of winning the good and become

prepared to bid higher than she originally intended. If that happens, auction fever

triggers a quasi-endowment effect.

Auction fever is in agreement with the fact that, beyond the average revenue

already being significantly higher, we also observe relatively many extreme auction
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revenues in the OO compared to the other two formats. For example, only 1.3%

of all common values are in the right hand tail of the common value distribution,

at values above 150. In both the AV and the JEA, less than 1% of auctions end

up at revenues above 150. In the OO in turn, 7.3% of auctions conclude at prices

above 150, suggesting that especially this format triggers strong mispricing.

To evaluate the impact of auction fever, we use bidder’s exogenously measured

inclination to succumb to the endowment effect, and perform a median split based

on this measure.38 There are two main effects: (i) bidders do not systematically

differ in how often they win auctions (MWU-test, p-value=.773), thus bidding

behavior appears similar at first; (ii) whenever they win an auction, bidders with

stronger endowment effects generate higher losses than their peers, as their total

profits are significantly different (MWU-test, p-value=.083)39, thus when becoming

active and winning an auction, bidders with strong endowment effects lose more

money. This evidence provides support for the conjecture that the OO activates

auction fever among people who suffer from the endowment effect.

A second important feature of the OO is that bidders can submit non-incremental

jump bids. Theoretical analyses of jump bidding suggest that this may be a prof-

itable strategy for a jump-bidder. Avery (1998) derives equilibria in which jump

bidding is used for signaling high value estimates, which predicts increased prof-

its for the winner. Ettinger and Michelucci (2016) show that jump bidding can

be used to obfuscate information. Naturally, behavioral factors may also affect

jump bidding. For example, impatient bidders who are determined to win an

auction quickly might frequently submit jump bids which lead them to win auc-

tions in cases in which they have initially overestimated the value, an error which

could have been corrected in the price discovery of an incremental bidding process.

These behavioral factors suggest that jump bidding may also be costly and reduce

winners’ profits. In the following, we evaluate the effect of jump bidding in the

OO auctions, focusing on whether jump bidding increases profits.

Note that within our auctions and due to the second-price rule in setting the

current price, jump bids are only revealed if at least one other bidder continues to

bid. While submitting additional bids, other bidders learn that the jump bidder

has entered an aggressive jump bid, as the jump bidder continues to be the stand-

38We normalize both measures to mean 0, variance 1, then take the average response as a
measure of the endowment effect. We compare matching group averages of those bidders with
above and below median endowment effects, yielding 8 observations (4 matching groups, one
observation above and below the median each).

39This analysis is robust to performing a median split based on the first principal compo-
nent obtained from the two measures of the endowment effect, with p-values of .564 and .083,
respectively (MWU-tests, 8 observations).
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ing bidder. The level of the jump bid is revealed at the moment that some other

bidder enters a bid higher than the jump bid. This feature captures how jump

bidding in popular auction formats occurs. As such, we expect weaker effects of

jump bidding than in first-price formats, where the level of a jump bid is revealed

immediately. In our analysis, we will show that even this subtle effect of jump

bidding matters for outcomes.

As a measure of jump bidding we construct the total jump bid of each bidder

in each round. To do so, we first calculate the increment of a new bid above the

current price, the second highest bid submitted in previous bidding rounds, at the

moment the new bid was submitted. By the rules of the auction, this increment

varies between 1 point, which is the minimum increment, and 200 points, if the

maximum possible bid was submitted straight at the start of the auction. Often,

the same bidder submits multiple bids. We denote the sum of all increments for

one bidder across one auction as the total jump bid of this bidder.

We observe extensive jump bidding: 21.6% of bids exceed the current price by

at least 20 points, and 11.2% by at least 50 points. Jump bidding is most prevalent

at the start of an auction, where 81.7% of entered bids are at least 20 points, and

60.4% are at least 50 points high. Jump bidding also gains in popularity over

time: in the first 15 rounds, the average jump bid at the start of an auction is

53.8, this increases to an average of 61.6 in the last 15 rounds.40

In Table 6, we show regression results on the use and effect of jump bids. The

main regressor of interest is the total jump bid, the sum of all bid increments by

each bidder in an auction. However, in regressions studying the effect of jump

bids, these bids are likely endogenous as strategies adjust to observed jump bids

submitted earlier. To account for this, we rely on instruments generated from

other rounds, which capture an individual bidder’s proneness for jump bidding.

As instruments, we use the average total jump bid of each bidder across all other

rounds, as well as the maximum bid increment in any of the other rounds. Using

2SLS, we then predict in a first stage the total jump bid in the current round

using the two instruments and other variables, such as the signal x. In the second

stage, we regress our dependent variables of interest on the predicted total jump

40In the first six sessions, the bidding rounds at which a bid was submitted was not saved
correctly due to a programming mistake. We reconstructed this data by the time stamp at
which bids were submitted. In 10.7% of the bids in these sessions, this classification is poten-
tially ambiguous, we assumed that bids were submitted in a later bidding round in these cases,
which leads to potentially fewer bids being considered for our type of analysis. The results we
present are robust to instead assuming that these bids were submitted simultaneously, or ran-
domizing this classification. Also, only using data from the last four sessions, where this error
was corrected, yields similar results.
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bid and some other variables. This provides a clean identification of the effect

of jump bids. For relevance, we here assume that a bidder’s proneness to jump

bid in other rounds correlates with this bidder’s jump bidding in the particular

round. For the exclusion restriction, we assume that other rounds’ jump bids only

affect outcomes through the bidding in that particular round. We think that this

is plausible for two reasons. First, the only way of affecting a particular round’s

outcomes is only through bidding in that round, while other rounds’ bids (our

instruments) cannot directly affect outcomes by the auction rules. Second, as for

potential indirect effects, this exclusion is reinforced by our experimental design,

as every round bidders draw new random signals and are allocated to new random

groups within the matching group, which limits the effects other rounds’ behavior

may have on this round’s competitors. In the Appendix Section A.11, we present

first-stage regression results in combination with a robustness check based on the

use of only the average total jump bids across all other rounds as instrument. We

show that the instruments are relevant, as all first stage regressions are significant

at conventional levels, with Kleibergen-Paap F -statistics of 96.4 or greater. In

addition, we show that we cannot reject the null hypothesis that the instruments

are valid, with p-values of the Hansen J-statistic of .582 or higher.

Column (1) presents results of regressing these jump bids on bidders’ infor-

mation. As predicted by theoretical models, bidders with higher signals submit

higher jump bids. The size of the jump bid is not significantly increasing over

time. Interestingly, this suggests that bidders with more experience shift their

jump bids to the start of the auction, as we do observe a significant increase in

jump bidding at the start over time while overall jump bidding remains constant.41

Table 6 also presents an analysis of the effects of jump bids. In (2), the

dependent variable is a dummy equal to one when a bidder wins the auction,

0 otherwise. Here we show that, controlling for own signal, a larger jump bid

increases the likelihood to win the auction. This is consistent with the signaling

motive in the theoretical literature.

Models (3) and (4) then study how profits are affected by the size of the jump

bid. Contrary to theoretical predictions, profits are significantly decreasing in the

size of the jump.

Winners on average lose money in the OO and, by submitting a jump bid,

41In the last 4 sessions, we elicited how much participants agreed with several motives for
jump bidding in the questionnaire, see Appendix Section A.12 for details. If we include those
in (1) as controls, the only statement that correlates significantly with the size of the jump bid
is “I tried to deter other bidders from bidding by entering a bid much higher than the current
price.”
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Table 6: Effect of jump bids in the OO

(1) (2) (3) (4)
Winners’

Jump bid Pr(win) Profits profits

Total jump bid (IV) 0.350 -0.261 -0.316
(0.083) (0.115) (0.133)

x 0.276 0.144 -0.067 -0.029
(0.031) (0.038) (0.037) (0.042)

t -0.138 0.877 0.784
(0.124) (0.169) (0.154)

V 0.624 0.633
(0.046) (0.064)

Constant 30.433 -12.306 -66.653 -58.996
(5.897) (2.656) (7.000) (9.917)

Observations 2687 2687 2687 600
Adjusted R2 0.070 0.102 0.291 0.287
Estimation OLS 2SLS 2SLS 2SLS

Notes: Jump bid is the increment of a bid beyond the current price at the moment
the bid was submitted. In (1), we regress total jump bid on bidders’ signals and
round t. In (2) to (4), we use 2SLS, where we instrument using the average total
jump bid and the maximum bid increment in other rounds. (2) is the ex-post
probability of winning, which is a dummy equal to 100 if a bidder wins the auction,
0 otherwise. Mean earnings are a participants’ average earning across all auctions,
winners’ pro�ts are the earnings for the auctions which a participant won. x is the
submitting bidder’s signal in round t. V represents the common value. Standard
errors in parentheses, clustered at the matching group level.
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participants select into this group of winners making a loss. Model (4) studies

whether this selection effect is the full reason beyond the negative relation between

jump bidding and profits. We do so by restricting the analysis to bidders who end

up winning the auction. We find that even within this group of bidders, the size

of the jump bid decreases profits further.

Results for experienced bidders are similar, see Table 14 in the Appendix. In

later rounds, jump bidding has a slightly less pronounced effect on earnings and

profits. Still, jump bidding continues to be a disadvantageous strategy also with

more experience, while jump bidding is in fact used more extensively later on.

7 Conclusion

In this paper, we study some salient factors that can contribute to the popularity

of open ascending auctions. In particular, we assess the roles that endogenous

information aggregation and behavioral biases play in explaining their prevalence.

In a common value setting, we compare two clock auctions, the ascending Vickrey

auction (AV) and the Japanese-English auction (JEA), which differ in irrevocable

exits of bidders being observable only in the latter. We also study the Oral Outcry

auction (OO), an auction format modeled to approximate popular designs, in

which bidders choose how much information they want to reveal through bids.

In agreement with their popularity, we find that the OO is most successful in

raising revenue. The JEA and the AV both raise higher revenue than expected in

the symmetric Nash equilibrium. In contradiction to some behavioral models that

predict higher revenue for the AV, we do not reject equality of revenue between the

JEA and the AV. We find that information aggregation fails in the JEA. Bidding

in the JEA reflects a worse estimate of the common value than in the AV.

It is not the case that bidders do not pay attention to early exits in the JEA.

To the contrary, bids correlate more strongly with the most recent dropout than in

the AV benchmark.42 The bidding pattern, however, deviates from what would be

observed when bidders bid according to the Nash equilibrium benchmark, and also

from what would be observed when they choose empirical best responses. The rel-

ative weight of how bidders incorporate information is best captured by a Bayesian

signal averaging heuristic. However, all models incorporating public information

underestimate bid levels and bidders in the JEA do not use public information

42Note that Hoelzl and Rustichini (2005) find that people are underconfident in complicated
tasks. Their result agrees with our finding that bidders place more weight to what others do in
the strategically complicated common value setup.
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sufficiently to tamper the winner’s curse, as predicted by signal averaging models.

At the same time, bidding behavior conveys less information than the theoret-

ical benchmark. The information reflected in early dropouts of the JEA is partly

obfuscated by heterogeneity in the bidding of early leavers. In agreement with the

fact that it is relatively cheap to drive up the price in the JEA, spiteful bidders

may stay longer in the JEA than in the AV, forcing cooperators to stay longer

in the cases where they want to win. Such spiteful bidding by early leavers may

neutralize the revenue diminishing force of the Bayesian signal averaging heuristic.

Our support for a spiteful motive resonates with some empirical findings in other

auction environments (Andreoni et al. (2007), Bartling and Netzer (2016)).

In the OO, bidders choose how much information to reveal through their bids.

Overall, bids in the OO convey as much information as those in the JEA. However,

in the OO-format the available information is least well processed, and the price

paid by the winner is the worst approximation of the common value among all

three formats.

Instead, the OO activates some behavioral biases that enhance revenue. Bid-

ders who suffer from endowment effects lose more money in these auctions. When

they become the provisional winner, auction fever strikes and they become willing

to submit higher bids than otherwise expected. In addition, the OO encourages

bidders to submit jump bids. In contrast to the theoretical literature, jump bids

do not enhance winners’ expected profits. Jump bidders are more likely to win

the auction, but they tend to lose money doing so.

Oral Outcry auctions may be popular not because they allow bidders to ag-

gregate information. Instead, a more important rationale for using Oral Outcry

auctions may be that they activate revenue enhancing behavioral biases.
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A Online Appendix to “Why are open ascending

auctions popular?”

The Appendix is intended for online publication. We start with an analysis of

information effects on eBay. Then, we discuss revenue predictions for different

parameterizations, and we present behavioral models. We present cursed equilib-

rium for the JEA and show the results for a horse race between different models

in the AV and the JEA. We also present some robustness checks of the analyses

in the main paper.

A.1 Information usage on eBay

eBay gives bidders access to a detailed bidding history during an auction. To

investigate the effects of information use on eBay, we collected data from eBay-

auctions between August 8 and September 27, 2019. We chose one of the most

frequently auctioned cellphones in that moment, the Apple iPhone X, 64GB, with

a total of 1194 phones. These phones vary considerably in the condition they are

sold, with buyers potentially making inference on the phone’s value for example

based on pictures, descriptions, or the sellers’ reviews. Crucially, the interested

bidders can study others’ bids, which may allow them to learn about a specific

phone’s value.

To explore this endogenous learning, we perform median splits of the data on

a number of dimensions which might convey information during the auction, such

as the interim price, the number of bids per bidder and the average increments

between consecutive bids. We then study if median splits along these variables

explain variation in the final price. Before performing the median splits, we regress

the final price on a number of observable characteristics, such as the (exogenously

set) length of the auction, the reserve price, the number of bids and the number

of bidders, as well as the review count of the seller. By extracting the residuals

obtained from these regressions, we factor out all variation that can be explained

by these observable exogenous characteristics.43

In Figure 6, we plot the average residual for cellphones above and below the

median for each of the three different splits of the data. First, we split the auctions

based on the price of the cellphone when half of the total length of the auction

elapsed. Second, we perform a split based on the average increment per bidder

43The described pattern is also found when directly comparing prices across the same median
splits.
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(given by the price at the end less the reserve price, divided by the number of bids

submitted). This captures the degree of jump bidding observed. Third, we split

on the number of bids per bidder.44

We observe that the average residuals of the iPhones are different depending

on which half of the data they are categorized in. The effects are also quite sizable,

as the average price of the phones is $425.8, standard deviation of $175.8. This

implies that there is systematic variation in the prices of these phones which cannot

be explained by the observable exogenous characteristics. Instead, this residual

variation can be explained by the categories we perform the median split by, and

these variables may capture information generated endogenously in the auction.

This indicates that information revelation might matter.

Crucially, this type of observational data cannot be used to establish unam-

biguously that information revelation is taking place and what effect revealing

information has. First of all, the direction of causality is not clear (e.g., are ex-

pensive phones attracting many bids, or do many bids increase the price?). More

importantly, we cannot evaluate what information is processed without observing

bidders’ information sets and the underlying value of the good to be sold. Also,

we are unable to determine the impact of information without providing a control

condition where no information is being revealed. However, this is possible in our

laboratory experiment.

A.2 Revenue predictions for different parameterizations

In the choice of parameterizing the mean and variances of the values and signals

for this experiment, we simulated revenues of the AV and the JEA to generate

predictions of the symmetric Nash equilibrium. In Table 7, we report results

of these simulations. For each parameterization, we draw 50,000 sets of signals

according to the procedures of the draws for the experiment, then calculate average

revenues based on all simulated bids. In Table 7, RAV are revenues in the AV,

RJEA are revenues in the JEA. We simulate different parameterizations, for the

full set of parameters (�; �V ; ��), which is the mean � and standard deviation

�V of the value distribution as well as the standard deviation �� of the error

distribution. Within each parameterization, we give mean revenues in the first

row, and the standard deviation of the revenue in the second row. From the

44As we perform the median split on these characteristics, we do not residualize the reserve
price when performing the split on the price in the first half, and we do not residualize the
number of bids and the number of bidders when performing the split on the number of bids per
bidder.
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Figure 6: Residuals obtained from regressions of final price

Table, it is clear that revenue differences of the Nash equilibrium are quite small

across specifications. Theoretical revenue differences for uniformly distributed

values and errors are similarly low, the case studied by the previous literature.

Additionally, we calculated revenue differences for varying numbers of bid-

ders. In Table 8, for the paramaterization used in this experiment, (�; �V ; ��) =

(100; 25; 35), we state Nash equilibrium revenue differences for different numbers

of bidders. Evidently, theoretical revenue differences between treatments are not

driven by the size of our auctions.
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Table 7: Revenue Nash predictions with varying parameters

(�; �V ; ��) RAV RJEA

(50, 10, 12)
Mean 48.3555 48.7510
Standard deviation (8.3056) (8.6844)

(100, 10, 12)
Mean 98.3877 98.7540
Standard deviation (8.4207) (8.8667)

(100, 10, 30)
Mean 98.3874 98.5852
Standard deviation (5.3808) (6.0436)

(100, 20, 20)
Mean 96.9314 97.6790
Standard deviation (17.6035) (18.2750)

(100, 20, 30)
Mean 96.5708 97.4156
Standard deviation (15.1637) (6.0436)

(100, 20, 40)
Mean 96.1720 97.2063
Standard deviation (12.7600) (12.4809)

(100, 30, 20)
Mean 96.6016 97.5939
Standard deviation (26.8225) (27.2350)

(100, 30, 30)
Mean 95.4797 96.9314
Standard deviation (23.5650) (24.1363)

(100, 40, 40)
Mean 92.9095 95.5161
Standard deviation (26.4453) (26.4859)

(200, 40, 40)
Mean 194.1535 195.6345
Standard deviation (35.1111) (36.3651)

Table 8: Revenue predictions varying number of bidders, (�; �V ; ��) = (100; 25; 35)

Number of bidders RAV RJEA

3
Mean 93.4861 94.2020
SD (18.0011) (18.2828)

5
Mean 95.6073 96.9290
SD (18.2036) (18.9653)

7
Mean 96.1953 97.7570
SD (18.1058) (19.0956)

9
Mean 96.6706 98.4264
SD (17.7684) (18.8915)

11
Mean 96.6956 98.5875
SD (17.6533) (18.7593)
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A.3 Näıve models

In this Section we discuss some behavioral models that have been discussed in the

literature, to explain observed behavior in the AV and the JEA. In the AV, there

are two principal behavioral models which might capture bidding behavior. First

is the “bid signal”-heuristic, according to which bidders might just enter a bid

equal to their own signal:

b(xi) = xi

In expectation, this will result in overbidding of the winning bidder, as the bidder

neither includes information on the distribution of signals and values nor considers

the informativeness of winning.

Second, somewhat more sophisticated bidders will incorporate information

about the prior distribution of the value. In the “Bayesian bid signal”-heuristic,

bidders still suffer from the Winner’s curse, but bid the expected value of the good

for sale, conditional on one’s signal, as in Goeree and Offerman (2003b):45

b(xi) = E[V jxi] = xi � E[�ijxi]

To explain behavior in the JEA, Levin et al. (1996) propose a “signal averaging

rule”, according to which bidders bid an equally weighted average of their own

signal and the signals of their fellow bidders, revealed from the previous dropouts.

This rule incorporates revealed information in a natural way.

Close to the bid-signal heuristic is the “symmetric signal averaging rule”, in-

troduced by Levin et al. (1996). Here, all bidders assume that all other bidders

follow this rule as well. After k bidders dropped out, with the vector of revealed

signals being Yi, this implies the following bid:

bj(xi;Yi) =
1

j
xi +

1

j

j�1X
k=1

Yi; (k)

This formulation can be rewritten to only depend on the last dropout price, for the

vector of previous dropout prices pj�1, pj�1 being the j � 1-th observed dropout:

bj(xi;pj�1) = xi +
j � 1

j
pj�1

A variant of this rule is the “asymmetric signal averaging rule”, according to which

bidders assume that other dropouts are based on the heuristic of bidding equal

to signal. This would enable bidders to more easily include others’ information.

45Within the setup of our experiment, we can use that �ijxi � N
�
�2
� (xi��)

�2
�+�2

V
;
�2
��

2
V

�2
�+�2

V

�
. As

derived in Goeree and Offerman (2003b): b(xi) =
�2
V xi+�

2
��

�2
V +�2

�
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Additionally, it appears to be an intuitive rule given the information salient in the

auction process. If bidders follow the asymmetric signal averaging rule, with pj�1

being the j � 1-th dropout, bids are given by:

bj(xi;pj�1) =
1

j
xi +

1

j

j�1X
k=1

pk

Similar to the “Bayesian bid signal” heuristic, signal averaging rules can also

incorporate information about the prior. According to the “Bayesian signal aver-

aging rule”, bidders apply Bayes rule in combination with the symmetric signal

averaging rule. In this case, after j � 1 observed dropouts, bidder i calculates the

average of available signals x̄i = 1
j
xi + 1

j

Pk�1
k=1 Yi;(5�k):

b(x̄i) =
�2
V x̄i + �2

��

�2
V + �2

�

While it is unlikely that a bidder that is sophisticated enough to apply Bayes

rule correctly would rely on a signal averaging rule, Bayesian signal averaging is

most of all useful in anchoring bidding to the prior, compared to standard signal

averaging. Even if Bayes rule in itself is too sophisticated, it is also unlikely that

bidders rely purely on averaging available signals and fully ignoring all information

on the prior distribution of values.

A.4 Cursed equilibrium in the JEA

As shown by Eyster and Rabin (2005), the expected payoffs from winning in the

�-virtual common value auction is given by:

�(V; p) = (1� �)V + �E[V jXi = xi]� p

for price p, compared to winners’ payoff in Nash equilibrium of �(V; p) = V �p. We

continue to analyze a game where � is homogeneous across participants, as well as

during the auction. This implies bidder’s cursedness is not affected by observing

other’s bids. From Milgrom and Weber (1982), we know that a symmetric Bayes

Nash equilibrium in the JEA is given by

bj(xi) = E
�
V jXi = xi; Yi;(1) = xi; : : : ; Yi;(5�j) = xi; p1 = b1

�
Yi;(4)

�
; : : :

: : : ; pj�1 = bj�1

�
Yi;(5�j+1)

� �
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This conditional expected value in a �-virtual game is equal to

E
h
(1� �)V + �E[V jXi = xi]

���Xi = xi; Yi;(1) = xi; : : : ; Yi;(5�j�1) = xi; p1 = b1

�
Yi;(4)

�
; : : :

: : : ; pj�1 = bj�1

�
Yi;(5�j+1)

� i
= (1� �)E[V jXi = xi; Yi;(1) = xi; : : : ; Yi;(5�j�1) = xi; p1 = b1

�
Yi;(4)

�
; : : : ; pj�1 = bj�1

�
Yi;(5�j+1)

�
]

+ �E[V jXi = xi]

As Milgrom and Weber (1982) have shown that bj(xi) is a Nash equilibrium in

the original game, the expression above is a symmetric cursed equilibrium in a

�-virtual game, for � 2 [0; 1].

To employ cursed equilibrium, we need to estimate the additional parameter

�. This also provides a measure of the cursedness of our subjects.

We estimate for the AV:

b(xi) =

 
xi �

R1
�1 ��V (xi � �)�2

�(�)Φ
3
�(�) d�R1

�1 �V (xi � �)�2
�(�)Φ

3
�(�) d�

!
| {z }

=wi

+

+ �

 
�2
�xi + �2

��

�2
V + �2

�

+

R1
�1 ��V (xi � �)�2

�(�)Φ
3
�(�) d�R1

�1 �V (xi � �)�2
�(�)Φ

3
�(�) d�

!
| {z }

=zi

We simulate all terms using bidders’ signals and then regress bids using OLS:

b(xi) = �1wi + �2zi

In a constrained regression, we impose no constant and �1 = 1. Then, �2 = �.

For the JEA, we proceed similarly. We first simulate Nash equilibrium bids, based

on the inference of observed dropouts.46 We also use OLS to estimate � in the

following equation:

bk(xi; x̄i) =
5x̄i�

2
V + ��2

�

5�2
V + �2

�| {z }
=wi

+�

�
�2
V xi + �2

��

�2
V + �2

�

� 5x̄i�
2
V + ��2

�

5�2
V + �2

�

�
| {z }

=zi

We regress dropout prices on x1; x2:

bk(xi; x̄i) = �1wi + �2zi

Again using constrained regression with no constant and �1 = 1, we obtain �2 = �.

46Note that we do not use the theoretical, unobserved signals other bidders hold for simu-
lations. These predictions differ from the Nash equilibrium predictions by not incorporating
realized dropout prices, but these do require inferences bidders are not able to make given the
observed dropouts in the laboratory.
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In Table 9, we summarize the regression results. We estimate � once for all pooled

data and once for the fourth dropouts in (2) and (4), respectively.

The coefficient on zi is �̂, which turns out to be low in our sample. Recall

that � = 0 corresponds to Nash equilibrium bidding, thus our bidding behavior

appears to be close to this benchmark judged by the cursedness of the participant

pool.

Table 9: Estimating �

(1) (2) (3) (4)
AV AV, d4 JEA JEA, d4

wi 1.000 1.000 1.000 1.000
(.) (.) (.) (.)

zi (for �̂) 0.058 0.985 -0.137 0.186
(0.058) (0.072) (0.059) (0.041)

Observations 2417 598 2453 599
Estimation OLS OLS OLS OLS
Notes: Standard errors in parentheses and clustered at the match-
ing group level.

A.5 Horse race between models

To understand how bidding behavior can be characterized, we analyze how well

individual bids can be predicted by the available models. For each bid in each

round and based on the available information, such as the signals and observed

dropouts, we simulate all models described previously. Then, we calculate the

distance between each of the bids and all theoretical predictions, using the squared

difference. Denote �i;t;m the distance of the bid by bidder i in round t, compared

to model m. bj;i;t is the observed dropout price of bidder i in round t, dropping

out at order j.47 bmj;i;t is the theoretically predicted dropout price by model m for

this bid. The distance �i;t;m is given by:

�i;t;m =
�
bj;i;t � bmj;i;t

�2

After calculating each of the distances for all bids and models, we can determine

which model fits individual bids best. Then, we calculate the average distance of

all models across all bids. In other words, as a measure of fit, we state the mean

squared error in predicting bids for each model.

To allow for a comparison of the size of the error, we also provide a benchmark

linear rule.48 For this, we run regressions which use the identical available infor-

47Here, we only consider bidders who actively choose to drop out.
48Note that all models are in fact linear models. Derivations are available on request.
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mation as the models, which is the bidder’s signal and dropouts in case they are

observable. We then state the mean squared error of this prediction. By design,

this minimizes this error within the class of linear models, which nests all models

which are competing in this analysis.

In our analysis, we distinguish bids by dropout order. The first dropout order

are all bidders who drop out first in an auction, and so forth. Note that the fourth

dropout order is the most interesting, as these determine revenue.

Horse race for the AV

We start by comparing bidding behavior in the AV to the benchmarks. At this

stage, we consider four models. We compare the Nash equilibrium benchmark

and three näıve models: i) bidders exactly bid their signal, ii) Bayesian bid signal,

where bidders suffer from the winner’s curse, but do take the base rate into ac-

count, as in Goeree and Offerman (2003b), and iii) bidders in cursed equilibrium

as proposed by Eyster and Rabin (2005), with an estimated �̂ = :0578. Next to

it, we provide the mean squared error of the linear benchmark at each dropout

order, where only the private information signal is observable by bidders.

Figure 7: Mean squared error of model predictions in the AV

The first key insight is the fact that bidding behavior at early dropout orders

is substantially less well predicted, as the mean squared error of the benchmark is

much larger for early dropout orders than for late dropout orders. This decrease in

the error in dropout orders also holds for most other models considered. Second,
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especially for the later dropouts, Bayesian bid signal shows the lowest error, and

comes very close to the benchmark prediction error.

Horse race for the JEA

We now continue this analysis for the JEA, using the identical classification pro-

cedure. We incorporate all models tested above.49 Additionally, information rev-

elation allows us to evaluate näıve models where bidders incorporate others’ bids.

For this, we test three signal averaging rules. In these rules, bidders are bidding

the average of all signals available, both the private information signal as well as

signals inferred from opponents’ bidding behavior. The symmetric signal averag-

ing rule, originally introduced by Levin et al. (1996), uses that bidders assume

that also their opponents apply such a signal averaging rule. The Bayesian sig-

nal averaging rule is additionally applying information on the prior, similar to

the difference between bid signal and Bayesian bid signal-rules for second-price

auctions. The asymmetric signal averaging rule assumes that other bidders bid

their signal, thus allows for straightforward computations. For the JEA, the best

linear approximation incorporates all bids at earlier dropout orders, as these are

observable when deciding on a bid.

Figure 8: Mean squared error of model predictions in the JEA

The main pattern observed in the AV carries over to the JEA: later bids can

and in fact are predicted more precisely. Compared to the AV, the prediction

49For this auction format, we estimate �̂ = �0:137.
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error is much lower in the JEA at late dropout orders, suggesting that bidding

behavior is more predictable at this point (e.g., the best linear approximation for

the fourth dropout shows a mean squared error of 189.5 in the AV and 96.1 in the

JEA). At early dropout orders, there is however more noise in the JEA than in

the AV. This might complicate matters for remaining bidders trying to estimate

the value based on this revealed information in the JEA.

Interestingly, Nash equilibrium fits bidding behavior quite well, when compar-

ing the mean squared error to the benchmark error of the regression.50 Within

the signal averaging rules, the Bayesian signal averaging rule performs best. Note

that all signal averaging rules imply low intercepts in the linear bidding model,

and we have presented evidence for substantial intercepts in the main text. This

contributes to the high errors found for all signal-averaging rules.

A.5.1 Bid classification tables

Table 10 reports distances to predictions based on observed bidding.

50Note that the simulated Nash equilibrium bids, as well as all other models incorporating
observed dropouts, are based on inverting observed bids to retrieve the underlying signal. To
do so, these rules make assumptions about how other bidders form their bids. This often leads
to inferences about other bidders’ signals which are incorrect, as other bidders did not, in fact,
bid exactly as predicted by these models.
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Table 10: Classifying bids into models
AV JEA

First dropout

Nash 2321.8 1675.4
Bid signal 3718.3 3339.3
Bayesian bid signal 3763.3 3114.3
� cursed 2372.2 1590.5
Sym. signal average 3316.7
Asym. signal average 3316.7
Bay. signal average 3106.6

Best linear approx. 1004.0 1489.3

Second dropout

Nash 602.3 474.7
Bid signal 1261.3 1202.6
Bayesian bid signal 978.8 850.3
� cursed 597.6 488.2
Sym. signal average 722.3
Asym. signal average 722.9
Bay. signal average 505.6

Best linear approx. 465.9 473.5

AV JEA

Third dropout

Nash 356.3 225.8
Bid signal 807.5 952.6
Bayesian bid signal 298.1 398.6
� cursed 333.3 248.1
Sym. signal average 307.8
Asym. signal average 575.2
Bay. signal average 200.3

Best linear approx. 212.2 163.9

Fourth dropout

Nash 431.5 159.3
Bid signal 717.7 869.7
Bayesian bid signal 190.3 313.5
� cursed 404.0 176.4
Sym. signal average 331.6
Asym. signal average 567.4
Bay. signal average 335.6

Best linear approx. 189.5 96.1

Note: Average distance of observed bids to all considered models, by auction format and dropout order.
Distances are squared distance from observed bid to bid predicted by each model. The best �tting
model’s distance is in bold, models within 10% of the best model’s �t are italicized.

A.6 Learning effects

Information revelation in auctions potentially affects how bidders learn over time.

In open auctions, this learning might also take place during the auction itself, and

before information is revealed in sealed bid auctions, at the end of an auction.

In Figure 9, we plot the evolution of the winning bidders’ profits over rounds,

by auction format.

Figure 9: Evolution of profits over rounds by auction format

There is learning in the sense that profits increase over rounds. However, there

are no meaningful differences in the evolution of profits between the JEA and the
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AV, learning in the OO is strongest in the sense of increases in profits over time.

As we discuss in the main text, our results on revenue continue to hold in our

auction data separately both in the first and last 15 rounds.

A.7 Estimations with experienced bidders

In the following, we present results of repeating estimations we report in the main

text when only using the second half of our data, rounds 16 to 30.

In Table 3 in the main text, we study how available information correlates with

bids. Table 11 repeats this anaylsis for rounds 16-30.

Table 11: Bidders’ use of information in JEA
(1) (2) (3) (4) (5) (6) (7) (8) (9)

b1 b2 b3 b4 V dBR
Observed Observed Observed Observed Nash SA BSA

x 0.329 0.274 0.179 0.149 0.287 0.250 0.168 0.232 0.290
(0.078) (0.057) (0.047) (0.035) (0.000) (0.000) (0.000) (0.040) (0.001)

b1 0.341 0.038 0.029 0.100 0 0 -0.010 0.017
(0.063) (0.026) (0.015) (.) (.) (.) (0.035) (0.005)

b2 0.537 -0.010 0.167 0 0 -0.011 0.047
(0.089) (0.019) (.) (.) (.) (0.057) (0.008)

b3 0.641 0.333 0.750 0.832 0.302 0.143
(0.088) (.) (.) (.) (0.085) (0.009)

t -0.592 0.201 0.288 -0.063 0.379 -0.041
(0.522) (0.423) (0.163) (0.140) (0.187) (0.007)

Constant 35.745 34.694 23.235 26.580 11.265 0 0 41.700 50.207
(17.143) (10.104) (5.317) (4.495) (.) (.) (.) (6.651) (0.597)

Observations 300 300 300 300 300 300
Adj. R2 0.167 0.394 0.751 0.833 0.370 0.988
Rounds 16-30 16-30 16-30 16-30 16-30 16-30
Estimation FE FE FE FE OLS OLS

Notes: bj : dropout price at order j; V : common value; x: own signal. (1) to (4) are �xed e�ects estimates (within estimation) of
information use. Dependent variables (in columns) are dropout prices at each order, e.g. (1) are all bidders dropping out �rst in
an auction. Regressors (in rows) are the available information at each dropout order, i.e., the signal x and the preceding dropout
prices bj�1. (5) to (7) show how information is used in three canonical models, only for the fourth dropout. SA refers to the signal
averaging-rule, BSA to the Bayesian signal averaging-rule. Note that these show how bids respond to earlier bids, where these bids are
also calculated to follow the theoretical models. (8) shows how the price-setting bidder would have to use information to predict the
common value after observing three dropouts. (9) shows how the bidder dropping out fourth would weigh information in an empirical
best response. We provide adjusted R2 of the original within-estimated model, as well as from estimating standard OLS where we include
subject-speci�c absorbing indicators. The latter also includes �t obtained from subject �xed e�ects. Standard errors in parentheses,
clustered at the matching group level.

Across dropout orders, bidders appear to rely relatively less on public dropouts,

and relatively more on their own private signal in late rounds. (8) shows that ob-

served bids are more informative in late rounds than in the full data set. However,
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bidders still rely too strongly on the observed dropouts than what the empirical

best response in (9) suggests.

In Table 4, we show that bids are more strongly correlated in the JEA than in

the AV. Table 12 repeats this analysis for rounds 16-30. Results are in line with

results in the full data set, apart from the coefficient on the interaction term of b1

and JEA in the regression of b2.

Table 12: Comparing information use in the AV and the JEA, round 16-30
b2 b3 b4

bj�1 0.316 0.268 0.325
(0.050) (0.026) (0.039)

JEA � bj�1 0.026 0.269 0.316
(0.079) (0.091) (0.094)

Observations 599 599 599
Adjusted R2 0.432 0.733 0.784

Notes: bj�1 denotes the just preceding dropout,
e.g. is b1 for b2. JEA is a dummy equal one
for JEA auctions. Other variables in regression
omitted from table: all regressions include signal
x, round t, all preceding dropouts (bj�k for all
k 2 f1; : : : ; j � 1g), as well as all these variables
interacted with the JEA-dummy and a constant.
Standard errors in parentheses and clustered at the
matching group level.

In Table 5, we study whether separately elicited characteristics of subjects

correlate with the fixed effect we estimate from bidders’ information use. Table

13 repeats this with experienced bidders.

Point estimates are mostly comparable to the analysis with the full data set in

the main text. There are some estimates with larger standard errors, e.g. Imitator

is no longer significant in (1). Point estimates for Imitator in the JEA in (2) turn

negative, but remain not significant. The coefficient on SVO in the AV in (3)

and the JEA in (4) turns positive and significant, comparable to the coefficient

for early bids in (1). Note however that by restricting the dataset to the last 15

rounds, we will estimate the fixed effects much less precisely, as we on average

only have 3 observations per individual to estimate those. In addition, for one

bidder for b1 & b2, as well as for five bidders for b3 & b4, we cannot obtain a fixed

effect any longer, as we don’t have observations at these dropout orders for these

bidders.

In Figure 5 in the main text we plot squared distances from the value to the

prices in the auction and to some benchmarks, respectively. In Figure 10, we show

this based on auction rounds 16 to 30. We observe some learning, as distances

decrease compared to the analysis in the main text. This is strongest for the OO,
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Table 13: Bidder fixed effects and their characteristics, rounds 16 to 30

(1) (2) (3) (4)
Average bidder fixed effect

b1 & b2 b3 & b4

AV JEA AV JEA

SVO 0.110 -0.222 0.100 0.117
(0.043) (0.213) (0.034) (0.030)

Imitator 4.469 -1.086 3.014 3.179
(3.668) (7.912) (2.023) (2.032)

Constant 0.894 7.993 -4.797 -3.264
(1.847) (3.317) (1.295) (1.949)

Observations 50 39 47 38
Adjusted R2 -0.006 -0.013 0.035 0.141

Notes: Average �xed e�ects from regressing bids on available in-
formation for �rst and second vs. third and fourth dropout. SVO
is a subject’s social value orientation, in degrees. Imitator is a
dummy variable equal one if a subject chose to retrieve social in-
formation when this contains no valuable information on the true
state. Standard errors in parentheses, clustered at the matching
group level.

where distances move closer to the no information benchmark, and bids in the

empirical best response reveal more information than they do in the JEA.

Figure 10: Squared distance to common value, rounds 16 to 30
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In Table 6 in the main text, we investigate the effect of jump bids. In Table

14, we repeat this analysis for rounds 16 to 30, also constructing instruments

only from experienced bids. Effects of jump bidding appear to be somewhat less

pronounced in the second half of the data, but broadly similar.
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Table 14: Effect of jump bids in the OO, rounds 16-30

(1) (2) (3) (4)
Winners’

Jump bid Pr(win) Profits profits

Total jump bid (IV) 0.341 -0.106 -0.232
(0.097) (0.054) (0.067)

x 0.283 0.178 -0.118 -0.095
(0.029) (0.043) (0.014) (0.025)

t -0.043 0.471 0.434
(0.185) (0.130) (0.175)

V 0.587 0.630
(0.059) (0.071)

Constant 27.738 -14.532 -57.356 -49.753
(7.274) (2.465) (4.318) (8.201)

Observations 1309 1309 1309 300
Adjusted R2 0.072 0.097 0.304 0.283
Estimation OLS 2SLS 2SLS 2SLS
First-stage F-statistic 490.25 500.05 188.05
Hansen J-statistic, p-value .800 .249 .620

Notes: Jump bid is the increment of a bid beyond the current price at the moment the
bid was submitted. In 2SLS, we instrument the total jump bids and the maximum bid
increment in other rounds. x is the submitting bidder’s signal in round t. V represents the
common value. Standard errors in parentheses, clustered at the matching group level.

A.8 Information usage in the AV and the JEA

In Section 6.2, we describe an empirical best response dBR in the JEA. It relies

on estimated signals. Table 15 shows results of regressing signals on bids, which

we in turn use to predict signals based on observable bids, where xj refers to the

signal of the bidder dropping out in j-th order in round t, and bxj refers to the

predicted signal of the bidder dropping out in j-th order.

In Table 4, we show that bids are more strongly correlated in the JEA than in

the AV, suggesting that information is actively used in the open format. Doing so

controls for the correlation of unobservable dropouts in the AV, which arise as in

these regressions bids are ordered. Table 16 shows the full regression results.
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Table 15: Predicting signals with observed bids

(1) (2) (3)
x1 x2 x3

dj 0.205 0.567 1.009
(0.064) (0.089) (0.087)cx1 0.048 0.081

(0.191) (0.226)cx2 -0.147
(0.140)

t 0.270 0.177 0.166
(0.202) (0.175) (0.140)

Constant 68.089 33.977 5.797
(4.111) (11.964) (13.079)

Observations 600 600 600
Adjusted R2 0.031 0.213 0.342
Rounds 1-30 1-30 1-30
Estimation OLS OLS OLS
Session FE Yes Yes Yes
Notes: Standard errors in parentheses and clustered at the match-
ing group level.
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Table 16: Comparing information use in the AV and the JEA

b1 b2 b3 b4

x 0.247 0.297 0.242 0.227
(0.0457) (0.0216) (0.0224) (0.0298)

b1 0.285 -0.00113 -0.0141
(0.0309) (0.0172) (0.0209)

b2 0.357 -0.0114
(0.0319) (0.0317)

b3 0.465
(0.0440)

t -0.498 -0.0381 -0.126 -0.174
(0.155) (0.0872) (0.0596) (0.0341)

JEA � x 0.0464 -0.0296 -0.0704 -0.109
(0.0718) (0.0398) (0.0342) (0.0336)

JEA � b1 0.0871 0.0244 0.0392
(0.0463) (0.0243) (0.0253)

JEA � b2 0.195 -0.0271
(0.0533) (0.0479)

JEA � b3 0.244
(0.0827)

JEA � t 0.181 -0.0844 0.0433 0.0991
(0.315) (0.141) (0.0937) (0.0455)

Constant 32.09 38.94 37.14 33.30
(4.573) (1.653) (1.969) (2.440)

Observations 1199 1199 1199 1199
Adjusted R2 0.135 0.502 0.732 0.777
Estimation FE FE FE FE

Notes: Standard errors in parentheses and clustered at the match-
ing group level.
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A.9 Informational impact of dropouts

In this Section, we investigate the informational impact of earlier bids on subse-

quent bids. To do so, we first regress bids, by dropout order, on public information,

and then predict residuals. As this estimation by design excludes all private in-

formation, for example a bidder’s signal or bidders’ idiosyncratic characteristics,

this variation will be captured in the residual. Below, we reproduce the estimation

used to predict residuals, we do use matching group fixed effects in this estimation.

Table 17: Residual estimations
b1 b2 b3

b1 0.477 0.0221
(0.0385) (0.00955)

b2 0.665
(0.0435)

t -0.555 -0.148 -0.0479
(0.318) (0.108) (0.0949)

Constant 77.19 60.20 36.93
(4.930) (2.747) (4.435)

Observations 600 600 600
Adjusted R2 0.113 0.419 0.698
Fixed effects matching group matching group matching group
Estimation OLS OLS OLS

Notes: Standard errors in parentheses and clustered at the matching group
level.

We then regress dropouts at later dropout orders on these residuals, results

are reported in Table 18. Doing so, we can estimate the impact of information

revealed in earlier bids on later bids, where we isolate the information contribution

of each observed bid. For comparison, we repeat this exercise for Nash equilibrium

and the Bayesian signal-averaging rule.51

In (1) to (3), we observe that the effect of a bidder’s private information,

captured by x is less than the public information, revealed through the dropouts.

As in the analysis in the main text, we see that the just preceding dropout carries

most weight in explaining bidding behavior. This does not lend support to bidders

suffering from a strong correlation neglect, as we would expect higher coefficients

on the impact of earlier residuals in that case (e.g., on e1). Similarly, bidders’

private information, x, is weighted less than in the benchmarks.

51In predicting corresponding residuals, we do not use matching group fixed effects nor do
we control for round. For this estimation, note that the residuals are obtained from regressing
simulated bids on simulated bids.
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A.10 Explaining heterogeneity in bidding

In Section 6.3, we study correlations of bidders’ fixed effect with their separately

elicited characteristics. A potential concern of this analysis is that these fixed

effects are themselves estimated, and some might be more noisily estimated than

others. To account for this, we study whether the results presented in the main

text are robust to using Weighted Least Squares instead of OLS, where the weights

are given by the inverse of the average variance of the estimate of each bidders’

(averaged) fixed effect. This procedure ensures that particularly noisy fixed effects

receive less weight in the regression. We present results in Table 19.

Table 19: Bidder fixed effects and their characteristics

(1) (2) (3) (4)
Average bidder fixed effect

b1 & b2 b3 & b4

AV JEA AV JEA

SVO 0.118 -0.231 0.037 0.045
(0.024) (0.037) (0.024) (0.037)

Imitator 5.364 4.840 5.606 1.080
(1.030) (1.695) (1.030) (1.695)

Constant 0.492 7.681 -3.719 -0.615
(0.716) (1.092) (0.716) (1.092)

Observations 50 40 50 40
Estimation WLS WLS WLS WLS

Notes: Average �xed e�ects from regressing bids on available infor-
mation for �rst and second vs. third and fourth dropout; pooling
data from the AV and the JEA. SVO is a subject’s social value
orientation, in degrees. Imitator is a dummy variable equal one if
a subject chose to retrieve social information when this contains
no valuable information on the true state. We use weighted least
squares, with the weight given by the inverse average variance of
the estimate of the bidder �xed e�ect, averaged at d1 and d2, and
at d3 and d4. Standard errors in parentheses.

We observe that the point estimates presented in the main text carry over. In

addition, some coefficients which are not significant in the main text are highly

significant in this specification, e.g. the coefficient on SVO in JEA in (2).

A.11 Further results on jump bidding

In the main text, we report 2SLS estimations, where we instrument for the total

jump bid with the maximum bid increment and average total jump bid of each

bidder obtained in all other rounds.
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In Table 20, we report results of the first stage. In addition, we report the

Kleibergen-Paap F-statistic, which suggests that the instruments are relevant,

and p-values for the Hansen J-statistic, which do not reject that the chosen in-

struments are valid. Columns (2), (3) and (4) show first-stage results for each of

the corresponding second-stages in Table 6 in the main text.

Table 20: First stage for 2SLS estimation

(2) (3) (4)
Dependent variable: total jump bid

Maximum increment in other rounds 0.163 0.163 0.151
(0.032) (0.032) (0.060)

Mean total jump bid in other rounds 0.582 0.584 0.699
(0.069) (0.071) (0.079)

x 0.279 0.302 0.175
(0.028) (0.029) (0.046)

V -0.076 0.106
(0.018) (0.046)

t -0.163 -0.528
(0.122) (0.201)

Constant -26.761 -19.123 -9.381
(5.742) (7.061) (8.876)

Observations 2687 2687 600
F-statistic 96.4 98.7 143.3
Hansen J-test .584 .582 .948

Notes: The dependent variable across all �rst-stage regressions is the total jump bid,
given by the sum of bid increments beyond the current price within a round. As in-
struments, we use the maximum bid increment and the mean total jump bid for each
bidder in all but the current round. x is the submitting bidder’s signal in round t. V
represents the common value. Standard errors in parentheses, clustered at the matching
group level.

For robustness, we repeat the analysis in Table 6 using only the mean total

jump bid in other rounds, and show results in Table 21.

22



Table 21: Effect of jump bids in the OO, one instrument

(1) (2) (3) (4)
Winners’

Jump bid Pr(win) Pro�ts pro�ts

Total jump bid (IV) 0.343 -0.274 -0.315
(0.087) (0.134) (0.151)

x 0.274 0.146 -0.064 -0.031
(0.032) (0.039) (0.043) (0.044)

t -0.137 0.875 0.779
(0.125) (0.166) (0.151)

V 0.624 0.634
(0.046) (0.066)

Constant 30.525 -12.128 -66.217 -58.989
(5.937) (2.756) (6.987) (10.231)

Observations 2687 2687 2687 600
Adjusted R2 0.069 0.103 0.284 0.286
Estimation OLS 2SLS 2SLS 2SLS
F-statistic 86.9 85.7 325.2

Notes: Jump bid is the increment of a bid beyond the current price at the moment the
bid was submitted. In (1), we regress total jump bid on bidders’ signals and round
t. In (2) to (4), we use 2SLS, where we instrument using the average total jump bid
in other rounds. (2) is the ex-post probability of winning, which is a dummy equal
to one if a bidder wins the auction, 0 otherwise. Mean earnings are a participants’
average earning across all auctions, winners’ pro�ts are the earnings for the auctions
which a participant won. x is the submitting bidder’s signal in round t. V represents
the common value. Standard errors in parentheses, clustered at the matching group
level.

A.12 Questionnaire results

In the questionnaire, we offered several reasons why bidders behaved as they did,

asking participants how much they agree to a statement on a 7-point Likert scale.

Below is the mean and standard deviation of how much people agree with a

given statement. The scale is from 1 to 7, where 7 is fully agreeing, 4 is undecided.
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Treatment Statement Mean SD

AV In auctions where I did not expect to win, I stayed in the
auction longer to increase the price paid by the winner.

2.72 1.96

JEA In auctions where I did not expect to win, I stayed in the
auction longer to increase the price paid by the winner.

3.64 2.03

AV In auction where I did not expect to win, I quit the auc-
tion sooner to decrease the price paid by the winner

2.98 2.00

JEA In auction where I did not expect to win, I quit the auc-
tion sooner to decrease the price paid by the winner

3.08 1.83

JEA When I observed other bidders leaving, I formed a more
precise guess of the value of the item.

4.82 1.76

JEA When I observed other bidders leaving, I also immediately
left the auction, as I relied on the other bidders’ guess of
the value.

3.79 1.85

OO All else being equal, I was more likely to enter a new bid
if I have been the standing bidder for longer.

3.21 1.76

OO All else being equal, I was willing to pay more for the
item if I have been the standing bidder for longer.

3.26 1.82

OO I tried to deter other bidders from bidding by entering a
bid much higher than the current price.

4 2.12

OO I tried to prevent other bidders from entering their desired
bid by entering a bid much higher than the current price.

4.36 1.94

OO I entered bids much higher than the current price because
I thought this would allow me to pay a lower price for the
item.

3.21 2.04

OO I entered bids much higher than the current price because
I was feeling impatient and wanted the auction to finish
sooner.

3.15 1.95

OO I entered bids much higher than the current price because
I was becoming annoyed by being overbid by other par-
ticipants.

3.26 2.11

OO I entered bids much higher than the current price because
it felt costly to decide on and enter new bids.

2.92 1.75

A.13 Circle test

We also elicited subjects’ social value orientation. It is given as an angle. 0�

is purely selfish (6 self, 0 other), whereas 45� is splitting equally between self

and other (minimising inequality and maximising efficiency). Figure 11 gives a

histogram of observed choices.
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Figure 11: Angle in circle test

A.14 Histograms of auction revenues

In Figure 12, we plot histograms of the revenues in all three auction formats as

well as a histogram of the common values drawn.

Figure 12: Histograms of the drawn common values and revenues.
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B Online Appendix: Instructions and screen-

shots of the experimental interface

In the following, we reproduce the instructions for participants as well as examples

of the auction screens.

B.1 Experimental instructions

Page 1 Welcome!

Welcome to this experiment. Please read the following instructions carefully.

You will also receive a handout with a summary. There is a pen and paper

on your table, you can use these during the experiment. We ask that you do

not communicate with other people during the experiment. Please refrain from

verbally reacting to events that occur during the experiment. The use of mobile

phones is not allowed. If you have any questions, or need assistance of any kind,

at any time, please notify the experimenter with the CALL button on the wall to

your left, the experimenter will then assist you privately.

Your earnings will depend on your decisions and may depend on other partic-

ipants’ decisions. Your earnings will be paid to you privately in cash at the end

of today’s session. All your earnings will be denoted in points. At the end of the

experiment, each point that you earned will be exchanged for 25 eurocents.

Page 2 Decision and Payoffs

This experiment consists of 30 periods. In each period, you will be allocated

randomly to a new group of five participants. Therefore, in each period you will

be in a group with (most likely) different participants. You will never learn with

whom you are in a group. At the end of the experiment, five periods will be

randomly selected for payment. Your earnings will be the sum of the earnings in

these five periods.

Description of the situation and possible earnings

In each period, an auction will take place. In each auction, a product of

unknown value will be sold. In each period, you will be given a capital of 20 points.

Any profits or losses you make in this period will be added to or subtracted from

this capital.

Procedures

In each auction, each of the five participants (including you) can obtain the

product. First, every participant indicates that he or she is ready, and, as soon
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as all participants indicate so, there will be a countdown of three seconds, after

which the auction starts.

fJEA/AV: In the auction itself, the price will rise in increments of one point,

starting at a price of 0. This will be indicated with a thermometer, where the

level of the thermometer indicates the current price.

At any point while the price rises, you can decide to leave the auction. You do

so by clicking on the “EXIT” button, indicating that you are not willing to buy

the item and leave the auction for this period. For all remaining participants, the

auction continues.

The auction stops after four of the five participants have pushed the “EXIT”

button. The winner of the auction is the last participant remaining in the auction.

The price the winner has to pay to buy the product is determined by the level of the

thermometer when the fourth bidder has pushed the “EXIT” button. The price

level at this point is called SELLING PRICE. The winner obtains the product and

pays the SELLING PRICE. The earnings for the winner in the period are given by

the value of the product minus the SELLING PRICE. These earnings are added

to the capital of 20 points in this period. More details about how the value of the

product is determined will follow. All participants who exited the auction will not

obtain the product and will earn an amount equal to the capital of 20 points in

this period.

fAV ONLY: During the auction, you will not observe how many participants

remain in the auction. The price continues to rise as long as there are at least two

participants in the auction including yourself.gfJEA ONLY: During the auction,

you will be notified as soon as any other participant exits the auction. You will be

shown at which price this other bidder left the auction, and there will be a pause

of 4 seconds, in which the price will not be increasing. Afterwards, as long as there

are at least two participants remaining in the auction, the price rises again.g
In the unlikely case in which multiple participants quit at the same moment

and there is no bidder remaining in the auction afterwards, the program will

randomly choose the person buying the item from all participants who were the

last to exit and did so at the same time. The SELLING PRICE is then the level

of the thermometer where these participants simultaneously pressed the button.

At the end of each period, the SELLING PRICE paid by the buyer will be

shown to all participants within a group. The buyer will not literally receive a

product. In addition to the capital for the period, he or she will receive an amount

equal to the value of the product minus the selling price of the product (in points).

The previously unknown value of the good will then be revealed to all bidders, as
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well as their earnings in points in this period. Afterwards, you will be matched

with a new group of bidders and a new auction starts, with the same procedure.

Example: Suppose that the first 4 bidders who exit the auction do so at prices

40, 50, 70, 80. Further assume that the product’s value is 90 points. Then the

last remaining bidder in the auction will receive the product and pay 80 points.

His or her earnings from the auction will be 90-80=10, and the total earnings for

the period will be 10 + 20, where 20 is the capital of the period. All other bidders

will each earn the capital of 20 in that period.g
fOO: In the auction itself, participants will have the opportunity to enter

maximum bids. A maximum bid tells the computer how much you maximally

want to pay for the good. The computer will try to obtain the good as cheap

as possible on your behalf, and at a price that is no higher than your maximum

bid. If your maximum bid is the highest at some moment, then you are the

current standing bidder. The standing bidder at the end of the auction obtains

the product. This auction proceeds in bidding rounds in the following manner:

As soon as the auction starts, a 15 seconds countdown is initiated. Within

these 15 seconds, each bidder can submit a maximum bid that is zero or higher.

Whenever a maximum bid is submitted, the auction will be momentarily paused.

The bidder who submitted the highest maximum bid so far will be recognized as

the standing bidder. At the same time, the second highest maximum bid submitted

up to this point will be the CURRENT PRICE for the good. The CURRENT

PRICE will be displayed to all participants and a new bidding round immediately

starts. Again, a countdown of 15 seconds is initiated, and bidders can submit new

maximum bids. Any new maximum bid has to be higher than the CURRENT

PRICE. The current standing bidder is notified that he is the standing bidder.

He/she will only be able to submit a new maximum bid when he/she is no longer

the standing bidder.

This procedure will then be repeated. As soon as new maximum bids above the

CURRENT PRICE are submitted, there will be a brief pause, and afterwards a

new CURRENT PRICE and standing bidder will be declared. During the bidding

procedure, you will be able to see the last submitted maximum bid of each bidder

(if a bidder submitted at least one maximum bid). Only the maximum bid of

the current standing bidder is not revealed. Note that the bidder numbers do not

enable you to identify bidders, as groups change over periods and these numbers

are randomly reallocated.

Bidding will continue until no bidder in your group is willing to submit a

maximum bid higher than the CURRENT PRICE, and the countdown elapses.

28



At the end of each period, so when a countdown elapses before any new bid is

submitted, the earnings of the bidders are calculated as follows: The winner of the

auction is the bidder who submitted the highest maximum bid, and he or she will

pay a price equal to the CURRENT PRICE when bidding stopped. The buyer

will not literally receive a product. He or she will receive an amount equal to the

value of the product minus the CURRENT PRICE of the product (in points).

This amount is added to the capital of 20 points in this period. All other bidders

earn an amount equal to the capital of 20 points. The previously unknown value

of the good will then be revealed to all bidders, as well as their earnings in points

in this period. Afterwards, you will be matched with a new group of bidders and a

new auction starts, with the same procedure. Notice that the winner of an auction

can make a gain or a loss. A loss occurs if the price paid is higher than the value.

Even though the final standing bidder pays a price equal to the second highest

maximum bid, such bid may be high and result in a high price.g
In total, there will be 30 periods, and five randomly determined periods will

be chosen to be paid out. Your earnings for the experiment will be equal to the

sum of your earnings in these 5 periods.

Page 3 Value of the product and signals

The value of the product is a random number which changes in each period.

You cannot learn anything about subsequent value draws from previously observed

values. Within the period the value is identical for all participants in the group.

At the time of bidding, this value is unknown to all participants. Instead, each

participant receives a signal which provides an imprecise indication of what the

value may be. In the following, we will describe how the values and signals are

determined in each period.

In each period, the value of the product will be randomly determined. The

value can be any round number between 0 and 200. The figure below clarifies how

frequently different values occur. You can see that values close to 100 occur most

often (the frequency is highest when the value on the horizontals axis equals 100).

Values below 100 occur as frequently as values above 100. Also, values below 50

occur as often as values above 150. You do not need to be familiar with such a

distribution to participate in this experiment, and you will see some typical value

draws on the next page.
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The signals

Each participant will receive a (different) signal of the value. This signal gives

a first indication of the value of the product in that period, although this is only

imprecise information. In particular, the signal is the sum of the value and an

error. The figure below shows how frequently different errors occur. You can see

that errors close to 0 occur most often, and that errors below 0 occur as frequently

as errors above 0.
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The error (most likely) differs for every participant. Therefore, each participant

in your group will (most likely) obtain a different signal of the value, even though

the value of the product is the same for everyone. Signals higher than the value

occur as frequently as signals lower than the value. Signals closer to the value are

more likely than signals further away from the value. In this experiment, you will

encounter only values and signals between 0 and 200.

Notice that each signal in a group is informative about the value of the product.

If other bidders let their bidding depend on their signal, then their bidding will

be informative about the value of the product.

Note that the signals will be newly determined in each period, therefore only

the signals of this period are helpful for you to determine the value of the product

for sale.

Payment

As mentioned before, out of the 30 periods, 5 will be randomly selected. You

will receive the sum of the points that you earned in each of the 5 selected periods.

In each period, every bidder receives a capital of 20 points. Then, any gains or

losses a participant made in this period’s auction are added to or subtracted from

the capital. Notice that the buyer in a period can make a gain but also a loss. If

the buyer pays a price higher than the value of the product, he or she makes a loss.

Just like a profit is automatically added to the capital, a loss will automatically

be subtracted.

Page 4 We will now illustrate in one particular example how the auction process

works. We emphasize that this is only an example, and that these numbers are
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not relevant for the real auctions in which you will participate afterwards.

Example

First, a value of the product is randomly determined, but not revealed to the

participants. In our example, this value will be 121. Then, based on the value

of 121, the signal for each participant will be drawn. The following signals are

drawn: one bidder receives a signal of 60, one bidder a signal of 87, one bidder a

signal of 126, one bidder a signal of 144 and the last bidder a signal of 175. Now

the auction starts. fJEA/AV: The thermometer starts at 0, and rises continuously

as soon as every participant indicated that he or she is ready and the countdown

is initiated.

As the thermometer rises, bidders may decide to press the “EXIT” button and

leave the auction. Imagine that the first participant exits at a price of 52, the

second participant at a price of 77 and the third participant quits at a price of

109. Now, there still remain two bidders in the auction. fIN JEA: Each time a

participant quits, all remaining participants will be notified about this, and will

receive information about the price at which this participant chose to exit.g The

thermometer will keep rising up to the point where the fourth bidder presses the

“EXIT” button, for example at a price of 115. Then, the last remaining bidder

buys the product at the selling price of 115. In this example, the product’s value

was 121 points. Therefore, the winner will earn 121-115=6 points in addition to

his or her capital in this period, hence 6 + 20 = 26 points in total, if the period is

selected for payment.g fOO: The countdown starts at 15 seconds, and is initiated

as soon as every participant indicated that he or she is ready. Then, imagine that

the first participant to enter a bid submits a maximum bid of 52. This bidder

becomes the new standing bidder. As so far only one maximum bid has been

submitted, the CURRENT PRICE will be 0, and this is shown to all bidders as

soon as the next bidding round commences. The countdown is reset and starts

immediately. Then, imagine a new maximum bid of 77 is submitted. As this is

the current highest maximum bid, this bidder becomes the new standing bidder.

The second highest maximum bid at this point is 52, and therefore 52 is the new

CURRENT PRICE. Bidding continues in this fashion until the countdown elapses.

For example, imagine that in the next rounds maximum bids of 109, 115 and 120

are, and in the next bidding round the countdown elapses. Then, the bidder who

submitted the highest maximum bid (i.e. the bidder who bid 120) will win the

auction. This bidder will pay the last CURRENT PRICE, which equals the second

highest maximum bid (115 in this example). In this example, the product’s value

was 121 points. Therefore, the winner will earn 121-115=6 points in addition of
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his or her capital in this period, if the period will be selected for payment.g

Page 6 Practice draws

Now, you have the opportunity to see how typically values and corresponding

signals are drawn. You can click on a button to draw new values and signals.

Then, you will be shown a value and set of signals drawn according to the same

procedure as those in the experiment. In the experiment, you will not be able to

observe the value draw, but instead you receive one of the imprecise signals of the

value. Five signals corresponding to this value are shown to you next to the value

draw. When you click on the button again, a new value and corresponding set of

signals will be drawn, you can repeat this as often as you like. Note that these

example values and signals are not informative about the draws you will actually

face in the experiment.

Figure 13: Screenshot of the practice draws from the instructions.

When you have tried a number of times, please continue to the practice ques-

tions on the next page.

B.2 Additional elicitations

For the last 14 sessions, we added two additional measures, elicited after the

auctions concluded. Below are instructions for both tasks.

B.2.1 Imitation, adapted from Goeree and Yariv (2015)

Part 2

In this part of the experiment, you make an individual decision. The amount

you earn depends only on your choices and your choices do not affect the earnings

of other participants.

Guessing the urn

In this task, you have to guess which one of two possible urns has been selected.

It is equally likely that you face a red or a blue urn. These urns contain red and

blue balls as follows:
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• Red urn: 7 red balls and 3 blue balls

• Blue urn: 7 blue balls and 3 red balls

Information

For your decision, you have to choose to receive one of two types of information:

• Draw: The color of one randomly selected ball drawn from your urn will be

shown to you.

• History: The choices of three participants from previous sessions of this

experiment will be revealed to you. These three participants faced the same

urn as you do, but did not receive any of the two types of information you

can choose between (neither Draw nor History).

Task

After you receive this information, you have to guess which of the two urns

has been selected.

Payo�

You will earn 4 points if you guess correctly which urn has been chosen.

When you continue, it will be randomly determined whether you face the red

or the blue urn. In the next screen, you first choose the type of information you

would like to receive, then you have to enter your guess which urn you are facing.

B.2.2 Circle test, adapted from Linde and Sonnemans (2012)

Part 3

For this part of the experiment, you have been matched with one other ran-

domly selected participant, called OTHER. Your subsequent decision will be

anonymous, no participant will know with whom they have been matched. In

the end, either your or OTHER’s decision will be implemented.

Choice

In this part you have to choose between combinations of earnings for yourself

and the OTHER. All possible combinations are represented on a circle. You can
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click on any point on the circle. Which point you choose determines how much

money you and the OTHER earn. You can enter this choice on the next page.

Earnings

The axes in the circle represent how much money you and the OTHER earn

when you choose a certain point on the circle. The horizontal axis shows how

much you earn: the more to the right, the more you will earn. The vertical

axis shows how much the OTHER will earn: the more to the top, the more the

OTHER earns. The distribution can also imply negative earnings for you and/or

the OTHER. Points on the circle left of the middle imply negative earnings for

you, points below the middle imply negative earnings for the OTHER. When you

click on a point on the circle the corresponding combination of earnings, in cents,

will be displayed in the table to the right of the circle. You can try different

points by clicking on the circle using your mouse. Your choice will only become

final when you click on the “send” button.

Payo�

The OTHER is presented with the same choice situation. At the end of the

experiment, either your decision or the decision of the OTHER will be paid. This

will be determined by a random draw, your decision is as likely to be chosen as

the decision of the OTHER. This draw is not affected by the choices you or others

make.

B.3 Screenshots of the interface

In the following, some screenshots of the screens of auction participants for all

three treatments:
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Figure 14: Screenshot from a ascending Vickrey auction.

Figure 15: Screenshot from a Japanese English auction.

Figure 16: Screenshot from an oral outcry auction.
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